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UNIT-1  

❖ A BRIEF HISTORY OF COMPUERS: We begin our study of computers with a brief history.   

First Generation: Vacuum Tubes  

ENIAC The ENIAC (Electronic Numerical Integrator And Computer), designed and constructed at the 

University of Pennsylvania, was the world’s first general-purpose electronic digital computer. The 

project was a response to U.S needs during World War II.  

John Mauchly, a professor of electrical engineering at the University of Pennsylvania, and John 

Eckert, one of his graduate students, proposed to build a general-purpose computer using vacuum 

tubes for the BRL’s application. In 1943, the Army accepted this proposal, and work began on the 

ENIAC. The resulting machine was enormous, weighing 30 tons, occupying 1500 square feet of floor 

space, and containing more than 18,000 vacuum tubes. When operating, it consumed 140 kilowatts 

of power. It was also substantially faster than any electromechanical computer, capable of 5000 

additions per second.   

The ENIAC was completed in 1946, too late to be used in the war effort. The use of the ENIAC for 

a purpose other than that for which it was built demonstrated its general-purpose nature. The ENIAC 

continued to operate under BRL management until 1955, when it was disassembled.   

THE VON NEUMANN MACHINE The task of entering and altering programs for the ENIAC was 

extremely tedious. The programming process can be easy if the program could be represented in a 

form suitable for storing in memory alongside the data. Then, a computer could get its instructions 

by reading them from memory, and a program could be set or altered by setting the values of a 

portion of memory. This idea is known as the stored-program concept. The first publication of the 

idea was in a 1945 proposal by von Neumann for a new computer, the EDVAC (Electronic Discrete 

Variable Computer).   

In 1946, von Neumann and his colleagues began the design of a new stored-program computer, 

referred to as the IAS computer, at the Princeton Institute for Advanced Studies. The IAS 

computer,although not completed until 1952,is the prototype of all subsequent general-purpose 

computers.   

  
Figure 1.1 Structure of IAS Computer  

Figure 1.1 shows the general structure of the IAS computer). It consists of   
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• A main memory, which stores both data and instruction   

• An arithmetic and logic unit (ALU) capable of operating on binary data  

• A control unit, which interprets the instructions in memory and causes them to be executed   

• Input and output (I/O) equipment operated by the control unit   

  

This structure was outlined in von Neumann’s earlier proposal, which is worth quoting at this point:   

First: Because the device is primarily a computer, it will have to perform the elementary operations 

of arithmetic most frequently. At any rate a central arithmetical part of the device will probably have 

to exist and this constitutes the first specific part: CA.   

 Second: The logical control of the device, that is, the proper sequencing of its operations, can be most 

efficiently carried out by a central control organ. By the central control and the organs which perform 

it form the second specific part: CC  

Third: Any device which is to carry out long and complicated sequences of operations (specifically 

of calculations) must have a considerable memory . . . At any rate, the total memory constitutes the 

third specific part of the device: M.   

Fourth: The device must have organs to transfer . . . information from R into its specific parts C and 

M. These organs form its input, the fourth specific part: I  
   

Fifth: The device must have organs to transfer . . . from its specific parts C and M into R. These organs 

form its output, the fifth specific part: O.   

The control unit operates the IAS by fetching instructions from memory and executing them one at a 

time. A more detailed structure diagram is shown in Figure 1.2. This figure reveals that both the 

control unit and the ALU contain storage locations, called registers, defined as follows:   

• Memory buffer register (MBR): Contains a word to be stored in memory or sent to the I/O 

unit, or is used to receive a word from memory or from the I/O unit.   

• Memory address register (MAR): Specifies the address in memory of the word to be written 

from or read into the MBR.   

• Instruction register (IR): Contains the 8-bit opcode instruction being executed.   

• Instruction buffer register (IBR): Employed to hold temporarily the right-hand instruction 

from a word in memory.   

• Program counter (PC): Contains the address of the next instruction-pair to be fetched from 

memory.   

• Accumulator (AC) and multiplier quotient (MQ): Employed to hold temporarily operands 

and results of ALU operations.   
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Figure 1.2 Expanded Structure of IAS Computer  

COMMERCIAL COMPUTERS The 1950s saw the birth of the computer industry with two companies, 

Sperry and IBM, dominating the marketplace. In 1947, Eckert and Mauchly formed the Eckert-

Mauchly Computer Corporation to manufacture computers commercially. Their first successful 

machine was the UNIVAC I (Universal Automatic Computer), which was commissioned by the Bureau 

of the Census for the 1950 calculations.The Eckert-Mauchly Computer Corporation became part of 

the UNIVAC division of Sperry-Rand Corporation, which went on to build a series of successor 

machines.   

The UNIVAC I was the first successful commercial computer. It was intended for both scientific 

and commercial applications.  

The UNIVAC II, which had greater memory capacity and higher performance than the UNIVAC 

I, was delivered in the late 1950s and illustrates several trends that have remained characteristic of 

the computer industry.  

The UNIVAC division also began development of the 1100 series of computers, which was to 

be its major source of revenue. This series illustrates a distinction that existed at one time. The first 

model, the UNIVAC 1103, and its successors for many years were primarily intended for scientific 

applications, involving long and complex calculations.  
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The Second Generation: Transistors   

The first major change in the electronic computer came with the replacement of the vacuum 

tube by the transistor. The transistor is smaller, cheaper, and dissipates less heat than a vacuum tube 

but can be used in the same way as a vacuum tube to construct computers. Unlike the vacuum tube, 

which requires wires, metal plates, a glass capsule, and a vacuum, the transistor is a solidstate device, 

made from silicon.   

The transistor was invented at Bell Labs in 1947 and by the 1950s had launched an electronic 

revolution. It was not until the late 1950s, however, that fully transistorized computers were 

commercially available.  

The use of the transistor defines the second generation of computers. It has become widely 

accepted to classify computers into generations based on the fundamental hardware technology 

employed (Table 1.1).  

  
Table 1.1 Computer Generations  

THE IBM 7094 From the introduction of the 700 series in 1952 to the introduction of the last member 

of the 7000 series in 1964, this IBM product line underwent an evolution that is typical of computer 

products. Successive members of the product line show increased performance, increased capacity, 

and/or lower cost.   

The Third Generation: Integrated Circuits   

In 1958 came the achievement that revolutionized electronics and started the era of 

microelectronics: the invention of the integrated circuit. It is the integrated circuit that defines the 

third generation of computers.  

MICROELECTRONICS:  Microelectronics means, literally, “small electronics.” Since the beginnings of 

digital electronics and the computer industry, there has been a persistent and consistent trend 

toward the reduction in size of digital electronic circuits.  

IBM SYSTEM/360 By 1964, IBM had a firm grip on the computer market with its 7000 series of 

machines. In that year, IBM announced the System/360, a new family of computer products.  

DEC PDP-8 In the same year that IBM shipped its first System/360, another momentous first 

shipment occurred: PDP-8 from Digital Equipment Corporation (DEC).At a time when the average 

computer required an air-conditioned room,the PDP-8 (dubbed a minicomputer by the industry, 

after the miniskirt of the day) was small enough that it could be placed on top of a lab bench or be 

built into other equipment. It could not do everything the mainframe could, but at $16,000, it was 

cheap enough for each lab technician to have one. In contrast, the System/360 series of mainframe 

computers introduced just a few months before cost hundreds of thousands of dollars.   
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Later Generations   

Table 1.1 suggests that there have been a number of later generations, based on advances in 

integrated circuit technology. With the introduction of large-scale integration (LSI), more than 1000 

components can be placed on a single integrated circuit chip. Very-large-scale integration (VLSI) 

achieved more than 10,000 components per chip, while current ultra-large-scale integration (ULSI) 

chips can contain more than one million components.   

SEMICONDUCTOR MEMORY The first application of integrated circuit technology to computers was 

construction of the processor (the control unit and the arithmetic and logic unit) out of integrated 

circuit chips. But it was also found that this same technology could be used to construct memories.   

MICROPROCESSORS Just as the density of elements on memory chips has continued to rise,so has 

the density of elements on processor chips.As time went on,more and more elements were placed on 

each chip, so that fewer and fewer chips were needed to construct a single computer processor.   

A breakthrough was achieved in 1971,when Intel developed its 4004.The 4004 was the  

first chip to contain all of the components of a CPU on a single chip.  

The next major step in the evolution of the microprocessor was the introduction in 1972 of 

the Intel 8008. This was the first 8-bit microprocessor and was almost twice as complex as the 4004.   

Neither of these steps was to have the impact of the next major event: the introduction in 1974 

of the Intel 8080.This was the first general-purpose microprocessor. Whereas the 4004 and the 8008 

had been designed for specific applications, the 8080 was designed to be the CPU of a general-

purpose microcomputer   

About the same time, 16-bit microprocessors began to be developed. However, it was not until 

the end of the 1970s that powerful, general-purpose 16-bit microprocessors appeared. One of these 

was the 8086.   

  

  

❖ DESIGNING FOR PERFORMANCE  

Year by year, the cost of computer systems continues to drop dramatically, while the 

performance and capacity of those systems continue to rise equally dramatically. Desktop 

applications that require the great power of today’s microprocessor-based systems include   

• Image processing   

• Speech recognition   

• Videoconferencing   

• Multimedia authoring   

• Voice and video annotation of files   

• Simulation modeling   

Microprocessor Speed   

The evolution of Microprocessors continues to bear out Moore’s law. So long as this law holds, 

chipmakers can unleash a new generation of chips every three years—with four times as many 

transistors. In microprocessors, the addition of new circuits, and the speed boost that comes from 

reducing the distances between them, has improved performance four- or fivefold every three years 
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or so since Intel launched its x86 family in 1978. The more elaborate techniques for feeding the 

monster into contemporary processors are the following:   

• Branch prediction: The processor looks ahead in the instruction code fetched from memory 

and predicts which branches, or groups of instructions, are likely to be processed next   

• Data flow analysis: The processor analyzes which instructions are dependent on each other’s 

results, or data, to create an optimized schedule of instructions   

• Speculative execution: Using branch prediction and data flow analysis, some processors 

speculatively execute instructions ahead of their actual appearance in the program execution, 

holding the results in temporary locations.   
  

Performance Balance   

While processor power has raced ahead at breakneck speed, other critical components of the 

computer have not kept up.The result is a need to look for performance balance: an adjusting of the 

organization and architecture to compensate for the mismatch among the capabilities of the various 

components.  

The interface between processor and main memory is the most crucial pathway in the entire 

computer because it is responsible for carrying a constant flow of program instructions and data 

between memory chips and the processor.    

There are a number of ways that a system architect can attack this problem, all of which are 

reflected in contemporary computer designs. Consider the following examples:   

• Increase the number of bits that are retrieved at one time by making DRAMs “wider” rather 

than “deeper” and by using wide bus data paths.   

• Change the DRAM interface to make it more efficient by including a cache7 or other buffering 

scheme on the DRAM chip.   

• Reduce the frequency of memory access by incorporating increasingly complex and efficient 

cache structures between the processor and main memory.   

• Increase the interconnect bandwidth between processors and memory by using higherspeed 

buses and by using a hierarchy of buses to buffer and structure data flow.   

  

Improvements in Chip Organization and Architecture   

There are three approaches to achieving increased processor speed:   

• Increase the hardware speed of the processor.   

• Increase the size and speed of caches that are interposed between the processor and main 

memory. In particular, by dedicating a portion of the processor chip itself to the cache, cache 

access times drop significantly.   

• Make changes to the processor organization and architecture that increase the effective speed 

of instruction execution.   

However, as clock speed and logic density increase, a number of obstacles become more 

significant:  

• Power: As the density of logic and the clock speed on a chip increase, so does the power 

density.   
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• RC delay: The speed at which electrons can flow on a chip between transistors is limited by 

the resistance and capacitance of the metal wires connecting them; specifically, delay 

increases as the RC product increases. As components on the chip decrease in size, the wire 

interconnects become thinner, increasing resistance. Also, the wires are closer together, 

increasing capacitance.   

• Memory latency: Memory speeds lag processor speeds.  

Beginning in the late 1980s, and continuing for about 15 years, two main strategies have been used 

to increase performance beyond what can be achieved simply by increasing clock speed. First, there 

has been an increase in cache capacity. Second, the instruction execution logic within a processor has 

become increasingly complex to enable parallel execution of instructions within the processor.  

 Two noteworthy design approaches have been pipelining and superscalar. A pipeline works much 

as an assembly line in a manufacturing plant enabling different stages of execution of different 

instructions to occur at the same time along the pipeline. A superscalar approach in essence allows 

multiple pipelines within a single processor so that instructions that do not depend on one another 

can be executed in parallel.  

  

  

❖ EVOLUTION OF INTEL X86 ARCHITECTURE:  

  

We have Two computer families: the Intel x86 and the ARM architecture. The current x86 

offerings represent the results of decades of design effort on complex instruction set computers 

(CISCs).   

The x86 incorporates the sophisticated design principles once found only on mainframes and 

supercomputers and serves as an excellent example of CISC design. An alternative approach to 

processor design in the reduced instruction set computer (RISC). The ARM architecture is used in a 

wide variety of embedded systems and is one of the most powerful and best-designed RISC-based 

systems on the market.   

In terms of market share, Intel has ranked as the number one maker of microprocessors for non-

embedded systems for decades, a position it seems unlikely to yield. Interestingly, as 

microprocessors have grown faster and much more complex, Intel has actually picked up the pace.  

Intel used to develop microprocessors one after another, every four years.  

It is worthwhile to list some of the highlights of the evolution of the Intel product line:   

• 8080: The world’s first general-purpose microprocessor. This was an 8-bit machine, with an 

8-bit data path to memory. The 8080 was used in the first personal computer, the Altair.   

• 8086: A far more powerful, 16-bit machine. In addition to a wider data path and larger 

registers, the 8086 sported an instruction cache, or queue, that prefetches a few instructions 

before they are executed. A variant of this processor, the 8088, was used in IBM’s first personal 

computer, securing the success of Intel. The 8086 is the first appearance of the x86 

architecture.   

• 80286: This extension of the 8086 enabled addressing a 16-MByte memory instead of just 1 

MByte.   
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• 80386: Intel’s first 32-bit machine, and a major overhaul of the product. With a 32-bit 

architecture, the 80386 rivaled the complexity and power of minicomputers and mainframes 

introduced just a few years earlier. This was the first Intel processor to support multitasking, 

meaning it could run multiple programs at the same time.   

• 80486: The 80486 introduced the use of much more sophisticated and powerful cache 

technology and sophisticated instruction pipelining. The 80486 also offered a built-in math 

coprocessor, offloading complex math operations from the main CPU.   

• Pentium: With the Pentium, Intel introduced the use of superscalar techniques, which allow 

multiple instructions to execute in parallel.   

• Pentium Pro: The Pentium Pro continued the move into superscalar organization begun with 

the Pentium, with aggressive use of register renaming, branch prediction, data flow analysis, 

and speculative execution.   

• Pentium II: The Pentium II incorporated Intel MMX technology, which is designed specifically 

to process video, audio, and graphics data efficiently.   

• Pentium III: The Pentium III incorporates additional floating-point instructions to support 

3D graphics software.   

• Pentium 4: The Pentium 4 includes additional floating-point and other enhancements for 

multimedia.8   

• Core: This is the first Intel x86 microprocessor with a dual core, referring to the 

implementation of two processors on a single chip.   

• Core 2: The Core 2 extends the architecture to 64 bits. The Core 2 Quad provides four 

processors on a single chip.   

Over 30 years after its introduction in 1978, the x86 architecture continues to dominate the 

processor market outside of embedded systems. Although the organization and technology of the x86 

machines has changed dramatically over the decades, the instruction set architecture has evolved to 

remain backward compatible with earlier versions. Thus, any program written on an older version 

of the x86 architecture can execute on newer versions. All changes to the instruction set architecture 

have involved additions to the instruction set, with no subtractions. The rate of change has been the 

addition of roughly one instruction per month added to the architecture over the 30 years. so that 

there are now over 500 instructions in the instruction set.  

The x86 provides an excellent illustration of the advances in computer hardware over the past 

30 years. The 1978 8086 was introduced with a clock speed of 5 MHz and had 29,000 transistors. A 

quad-core Intel Core 2 introduced in 2008 operates at 3 GHz, a speedup of a factor of 600, and has 

820 million transistors, about 28,000 times as many as the 8086. Yet the Core 2 is in only a slightly 

larger package than the 8086 and has a comparable cost.  

  

  

❖ COMPUTER COMPONENTS  
  

Virtually all contemporary computer designs are based on concepts developed by John von 

Neumann at the Institute for Advanced Studies, Princeton. Such a design is referred to as the von 

Neumann architecture and is based on three key concepts:   
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• Data and instructions are stored in a single read–write memory.   

• The contents of this memory are addressable by location, without regard to the type of data 

contained there.   

• Execution occurs in a sequential fashion (unless explicitly modified) from one instruction to 

the next.  

If there is a particular computation to be performed, a configuration of logic components 

designed specifically for that computation could be constructed. The resulting “program” is in the 

form of hardware and is termed a hardwired program.   

Now consider this alternative. Suppose we construct a general-purpose configuration of 

arithmetic and logic functions. This set of hardware will perform various functions on data depending 

on control signals applied to the hardware. In the original case of customized hardware, the system 

accepts data and produces results (Figure 1.3a). With general-purpose hardware, the system accepts 

data and control signals and produces results.   

Thus, instead of rewiring the hardware for each new program, the programmer merely needs to 

supply a new set of control signals by providing a unique code for each possible set of control signals, 

and let us add to the general-purpose hardware a segment that can accept a code and generate control 

signals (Figure 1.3b). To distinguish this new method of programming, a sequence of codes or 

instructions is called software.  

  
1.3 Hardware and Software approaches  

Figure 1.3b indicates two major components of the system: an instruction interpreter and a 

module of general-purpose arithmetic and logic functions.These two constitute the CPU. Data and 

instructions must be put into the system. For this we need some sort of input module. A means of 

reporting results is needed, and this is in the form of an output module. Taken together, these are 

referred to as I/O components.   
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There must be a place to store temporarily both instructions and data. That module is called 

memory, or main memory to distinguish it from external storage or peripheral devices. Von Neumann 

pointed out that the same memory could be used to store both instructions and data.   

Figure 1.4 illustrates these top-level components and suggests the interactions among them. The 

CPU exchanges data with memory. For this purpose, it typically makes use of two internal (to the CPU) 

registers: a memory address register (MAR), which specifies the address in memory for the next read 

or write, and a memory buffer register (MBR), which contains the data to be written into memory or 

receives the data read from memory. Similarly, an I/O address register (I/OAR) specifies a particular 

I/O device. An I/O buffer (I/OBR) register is used for the exchange of data between an I/O module 

and the CPU.   

A memory module consists of a set of locations, defined by sequentially numbered addresses. 

Each location contains a binary number that can be interpreted as either an instruction or data. An 

I/O module transfers data from external devices to CPU and memory, and vice versa. It contains 

internal buffers for temporarily holding these data until they can be sent on.   

  
1.4 Computer Components  

  

❖ COMPUTER FUNCTIONS  

The basic function performed by a computer is execution of a program, which consists of a set of 

instructions stored in memory. Instruction processing consists of two steps: The processor reads ( 

fetches) instructions from memory one at a time and executes each instruction. Program execution 

consists of repeating the process of instruction fetch and instruction execution.   

The processing required for a single instruction is called an instruction cycle. Using the simplified 

two-step description given previously, the instruction cycle is depicted in Figure 1.5. The two steps 

are referred to as the fetch cycle and the execute cycle. Program execution halts only if the machine 



                              UNIT-1  

  

GEU Page 11  

  

is turned off, some sort of unrecoverable error occurs, or a program instruction that halts the 

computer is encountered.   

  
Figure 1.5 Basic Instruction Cycle  

  

Instruction Fetch and Execute   

At the beginning of each instruction cycle, the processor fetches an instruction from memory. 

The program counter (PC) holds the address of the instruction to be fetched next, the processor 

always increments the PC after each instruction fetch so that it will fetch the next instruction in 

sequence.  

For example, consider a computer in which each instruction occupies one 16-bit word of 

memory. If the program counter is set to location 300. The processor will next fetch the instruction at 

location 300. On next instruction cycles, it will fetch instructions from locations 301,302,303,and so 

on.   

The fetched instruction is loaded into a register in the processor known as the instruction 

register (IR). The processor interprets the instruction and performs the required action. In general, 

these actions fall into four categories:   

• Processor-memory: Data may be transferred from processor to memory or from memory to 

processor.   

• Processor-I/O: Data may be transferred to or from a peripheral device by transferring 

between the processor and an I/O module.   

• Data processing: The processor may perform some arithmetic or logic operation on data.   

• Control: An instruction may specify that the sequence of execution be altered. For example, 

the processor may fetch an instruction from location 149, which specifies that the next 

instruction be from location 182. The processor will remember this fact by setting the program 

counter to 182.Thus,on the next fetch cycle, the instruction will be fetched from location 182 

rather than 150.  

An instruction’s execution may involve a combination of these actions. Consider a simple 

example using a hypothetical machine that includes the characteristics listed in Figure 1.6. The 

processor contains a single data register, called an accumulator (AC). Both instructions and data are 

16 bits long. Thus, it is convenient to organize memory using 16-bit words. The instruction format 

provides 4 bits for the opcode, so that there can be as many as 24 = 16 different opcodes, and up to 

212 = 4096 (4K) words of memory can be directly addressed.   
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Figure 1.6 Characteristics of a Hypothetical machine  

Figure 1.7 illustrates a partial program execution, showing the relevant portions of memory 

and processor registers.1 The program fragment shown adds the contents of the memory word at 

address 940 to the contents of the memory word at address 941 and stores the result in later location.  

  
Figure 1.7 Example of Program Execution  Three 

instructions are required:  

1. The PC contains 300, the address of the first instruction. This instruction (the value  

1940 in hexadecimal) is loaded into the instruction register IR and the PC is incremented.   
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2. The first 4 bits (first hexadecimal digit) in the IR indicate that the AC is to be loaded. 

The remaining 12 bits (three hexadecimal digits) specify the address (940) from which data are to 

be loaded.   

3. The next instruction (5941) is fetched from location 301 and the PC is incremented.   

4. The old contents of the AC and the contents of location 941 are added and the result  

is stored in the AC.   

5. The next instruction (2941) is fetched from location 302 and the PC is incremented.   

6. The contents of the AC are stored in location 941.   

For example, the PDP-11 processor includes an instruction, expressed symbolically as ADD B,A, 

that stores the sum of the contents of memory locations B and A into memory location A. A single 

instruction cycle with the following steps occurs:   

• Fetch the ADD instruction.   

• Read the contents of memory location A into the processor.   

• Read the contents of memory location B into the processor. In order that the contents 
of A are not lost, the processor must have at least two registers for storing memory values, rather 
than a single accumulator.   

• Add the two values.   

• Write the result from the processor to memory location A.   
  

Figure 1.8 provides a more detailed look at the basic instruction cycle of Figure 1.5.The figure is 

in the form of a state diagramThe states can be described as follows:   

  
Figure 1.8 Instruction Cycle State Diagram  

• Instruction address calculation (iac): Determine the address of the next instruction 

to be executed.  

• Instruction fetch (if): Read instruction from its memory location into the processor.   

• Instruction operation decoding (iod): Analyze instruction to determine type of 

operation to be performed and operand(s) to be used.   
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• Operand address calculation (oac): If the operation involves reference to an operand 

in memory or available via I/O, then determine the address of the operand.   

• Operand fetch (of): Fetch the operand from memory or read it in from I/O.   

• Data operation (do): Perform the operation indicated in the instruction.   

• Operand store (os): Write the result into memory or out to I/O.   

  

Interrupts   

Virtually all computers provide a mechanism by which other modules (I/O, memory) may 

interrupt the normal processing of the processor. Interrupts are provided primarily as a way to 

improve processing efficiency. Table 1.2 lists the most common classes of interrupts.  

  
Table 1.2 Classes of Interrupts  

Figure 1.9a illustrates this state of affairs. The user program performs a series of WRITE calls 

interleaved with processing. Code segments 1, 2, and 3 refer to sequences of instructions that do not 

involve I/O. The WRITE calls are to an I/O program that is a system utility and that will perform the 

actual I/O operation. The I/O program consists of three sections:   

• A sequence of instructions, labeled 4 in the figure, to prepare for the actual I/O 
operation.This may include copying the data to be output into a special buffer and preparing the 
parameters for a device command.   

• The actual I/O command. Without the use of interrupts, once this command is issued, the 
program must wait for the I/O device to perform the requested function (or periodically poll the 
device). The program might wait by simply repeatedly performing a test operation to determine if 
the I/O operation is done.   

• A sequence of instructions, labeled 5 in the figure, to complete the operation. This may 

include setting a flag indicating the success or failure of the operation.  
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Figure 1.9 Program Flow of Control Without and With Interrupts  

  

INTERRUPTS AND THE INSTRUCTION CYCLE With interrupts, the processor can be engaged in 

executing other instructions while an I/O operation is in progress.   

Consider the flow of control in Figure 1.9b. As before, the user program reaches a point at 

which it makes a system call in the form of a WRITE call. After these few instructions have been 

executed, control returns to the user program. Meanwhile, the external device is busy accepting data 

from computer memory and printing it. This I/O operation is conducted concurrently with the 

execution of instructions in the user program.   

When the external device becomes  ready to accept more data from the processor,—the I/O 

module for that external device sends an interrupt request signal to the processor. The processor 

responds by suspending operation of the current program, branching off to a program to service that 

particular I/O device, known as an interrupt handler, and resuming the original execution after the 

device is serviced. The points at which such interrupts occur are indicated by an asterisk in Figure 

1.9b.   

From the point of view of the user program, an interrupt is just that: an interruption of the 

normal sequence of execution. When the interrupt processing is completed, execution resumes  

(Figure 1.10).   
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Figure 1.10 Transfer of Control via Interrupts  

To accommodate interrupts, an interrupt cycle is added to the instruction cycle, as shown in 

Figure 1.11.  

  
Figure 1.11Instruction Cycle with Interrupts  

In the interrupt cycle, the processor checks to see if any interrupts have occurred. If no 

interrupts are pending, the processor proceeds to the fetch cycle and fetches the next instruction of 

the current program. If an interrupt is pending, the processor does the following:   

• It suspends execution of the current program being executed and saves its context   

• It sets the program counter to the starting address of an interrupt handler routine.   

The processor now proceeds to the fetch cycle and fetches the first instruction in the interrupt handler 

program, which will service the interrupt. When the interrupt handler routine is completed, the 

processor can resume execution of the user program at the point of interruption.   

Consider Figure 1.12, which is a timing diagram based on the flow of control in Figures 1.9a and 

1.9b. Figure 1.9c indicates this state of affairs.  

In this case, the user program reaches the second WRITE call before the I/O operation spawned 

by the first call is complete. The result is that the user program is hung up at that point.  

 When the preceding I/O operation is completed, this new WRITE call may be processed, and a 

new I/O operation may be started. Figure 1.13 shows the timing for this situation with and without 

the use of interrupts. We can see that there is still a gain in efficiency because part of the time during 

which the I/O operation is underway overlaps with the execution of user instructions.  
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Figure 1.12 Program Timing: Short I/O Wait  

   

  
Figure 1.13 Program Timing: Long I/O Wait  

Figure 1.14 shows a revised instruction cycle state diagram that includes interrupt cycle 

processing.   
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Figure 1.14 Instruction Cycle State Diagram With Interrupts  

  

MULTIPLE INTERRUPTS Multiple interrupts can occur. Two approaches can be taken to dealing with 

multiple interrupts.   

The first is to disable interrupts while an interrupt is being processed. A disabled interrupt 

simply means that the processor can and will ignore that interrupt request signal. Thus, when a user 

program is executing and an interrupt occurs, interrupts are disabled immediately. After the interrupt 

handler routine completes, interrupts are enabled before resuming the user program and the 

processor checks to see if additional interrupts have occurred. This approach is nice and simple, as 

interrupts are handled in strict sequential order (Figure 1.15a).   

The drawback to the preceding approach is that it does not take into account relative priority or 

time-critical needs   

A second approach is to define priorities for interrupts and to allow an interrupt of higher 

priority to cause a lower-priority interrupt handler to be itself interrupted (Figure 1.15b). As an 

example of this second approach, consider a system with three I/O devices: a printer, a disk, and a 

communications line, with increasing priorities of 2, 4, and 5, respectively.   
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Figure 1.15 Transfer of Control with Multiple Interrupts  

  

Figure 1.16 illustrates a possible sequence.   

  
Figure 1.16 Example Time Sequence of Multiple Interrupts  
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A user program begins at t = 0. At t = 10, a printer interrupt occurs; user information is placed on 

the system stack and execution continues at the printer interrupt service routine (ISR). While this 

routine is still executing, at t = 15, a communications interrupt occurs. Because the communications 

line has higher priority than the printer, the interrupt is honored. The printer ISR is interrupted, its 

state is pushed onto the stack,and execution continues at the communications ISR.While this routine 

is executing, a disk interrupt occurs (t = 20). Because this interrupt is of lower priority, it is simply 

held, and the communications ISR runs to completion.   

When the communications ISR is complete (t = 25), the previous processor state is restored, which is 

the execution of the printer ISR. However, before even a single instruction in that routine can be 

executed, the processor honors the higher-priority disk interrupt and control transfers to the disk 

ISR. Only when that routine is complete (t = 35) is the printer ISR resumed. When that routine 

completes (t = 40), control finally returns to the user program.   

I/O Function   

An I/O module (e.g., a disk controller) can exchange data directly with the processor. Just as the 

processor can initiate a read or write with memory, designating the address of a specific location, the 

processor can also read data from or write data to an I/O module  

In some cases, it is desirable to allow I/O exchanges to occur directly with memory. In such a 

case, the processor grants to an I/O module the authority to read from or write to memory, so that 

the I/O-memory transfer can occur without tying up the processor. During such a transfer, the I/O 

module issues read or write commands to memory, relieving the processor of responsibility for the 

exchange. This operation is known as direct memory access (DMA).  

  

❖ BUS INTERCONNECTION  

A bus is a communication pathway connecting two or more devices. A key characteristic of a bus 

is that it is a shared transmission medium. Multiple devices connect to the bus, and a signal 

transmitted by any one device is available for reception by all other devices attached to the bus. If two 

devices transmit during the same time period, their signals will overlap and become garbled. Thus, 

only one device at a time can successfully transmit.   

Typically, a bus consists of multiple communication pathways, or lines. Each line is capable of 

transmitting signals representing binary 1 and binary 0. An 8-bit unit of data can be transmitted over 

eight bus lines. A bus that connects major computer components (processor, memory, I/O) is called a 

system bus.   

  

Bus Structure   
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Figure 1.17Bus Interconnection Schemes  

On any bus the lines can be classified into three functional groups (Figure 1.17): data, address, and 

control lines. In addition, there may be power distribution lines that supply power to the attached 

modules.  

The data lines provide a path for moving data among system modules. These lines, 

collectively, are called the data bus.  

 The address lines are used to designate the source or destination of the data on the data bus. 

For example, on an 8-bit address bus, address 01111111 and below might reference locations in a 

memory module (module 0) with 128 words of memory, and address 10000000 and above refer to 

devices attached to an I/O module (module 1).   

The control lines are used to control the access to and the use of the data and address lines. 

Control signals transmit both command and timing information among system modules. Timing 

signals indicate the validity of data and address information. Command signals specify operations to 

be performed. Typical control lines include   

• Memory write: Causes data on the bus to be written into the addressed location   

• Memory read: Causes data from the addressed location to be placed on the bus   

• I/O write: Causes data on the bus to be output to the addressed I/O port   

• I/O read: Causes data from the addressed I/O port to be placed on the bus   

• Transfer ACK: Indicates that data have been accepted from or placed on the bus   

• Bus request: Indicates that a module needs to gain control of the bus   

• Bus grant: Indicates that a requesting module has been granted control of the bus   

• Interrupt request: Indicates that an interrupt is pending   

• Interrupt ACK: Acknowledges that the pending interrupt has been recognized   

• Clock: Is used to synchronize operations   

• Reset: Initializes all modules   

  

The operation of the bus is as follows. If one module wishes to send data to another, it must do 

two things: (1) obtain the use of the bus, and (2) transfer data via the bus. If one module wishes to 

request data from another module, it must (1) obtain the use of the bus, and (2) transfer a request to 

the other module over the appropriate control and address lines. It must then wait for that second 

module to send the data.   

The classic physical arrangement of a bus is depicted in Figure 1.18.   
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Figure 1.18 Typical Physical Realization of a Bus Architecture  

In this example, the bus consists of two vertical columns of conductors. Each of the major system 

components occupies one or more boards and plugs into the bus at these slots. Thus, an on-chip bus 

may connect the processor and cache memory, whereas an on-board bus may connect the processor 

to main memory and other components.   

This arrangement is most convenient. A small computer system may be acquired and then 

expanded later (more memory, more I/O) by adding more boards. If a component on a board fails, 

that board can easily be removed and replaced.   

Multiple-Bus Hierarchies   

If a great number of devices are connected to the bus, performance will suffer. There are two main 

causes:   

1. In general, the more devices attached to the bus, the greater the bus length and hence the 

greater the propagation delay.   

2. The bus may become a bottleneck as the aggregate data transfer demand approaches the 

capacity of the bus.   

Most computer systems use multiple buses, generally laid out in a hierarchy. A typical traditional 

structure is shown in Figure 1.19a. There is a local bus that connects the processor to a cache memory 

and that may support one or more local devices The cache memory is connected to a system bus to 

which all of the main memory modules are attached. It is possible to connect I/O controllers directly 

onto the system bus. A more efficient solution is to make use of one or more expansion buses for this 

purpose. This arrangement allows the system to support a wide variety of I/O devices and at the same 

time insulate memory-to-processor traffic from I/O traffic.   

  

Figure 1.19a shows some typical examples of I/O devices that might be attached to the expansion 

bus.   
  

Network connections include local area networks (LANs), wide area networks (WANs), SCSI 

(small computer system interface), serial port.. This traditional bus architecture is reasonably 

efficient but begins to break down as higher and higher performance is seen in the I/O devices.   

In response to these growing demands, a common approach taken by industry is to build a high-

speed bus that is closely integrated with the rest of the system, requiring only a bridge between the 
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processor’s bus and the high-speed bus. This arrangement is sometimes known as a mezzanine 

architecture.   

Figure 1.19b shows a typical realization of this approach.Again,there is a local bus that connects 

the processor to a cache controller, which is in turn connected to a system bus that supports main 

memory. The cache controller is integrated into a bridge, or buffering device, that connects to the 

high-speed bus. This bus supports connections to high-speed LANs, video and graphics workstation 

controllers, SCSI and FireWireLower-speed devices are still supported off an expansion bus, with an 

interface buffering traffic between the expansion bus and the high-speed bus.   

The advantage of this arrangement is that the high-speed bus brings high-demand devices into 

closer integration with the processor and at the same time is independent of the processor.  
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Figure 1.19 Example Bus Confihuration  

Elements of Bus Design   

There are a few design elements that serve to classify and differentiate buses. Table 1.3 lists key 

elements.   

 BUS TYPES Bus lines can be separated into two generic types: dedicated and multiplexed. 

A dedicated bus line is permanently assigned either to one function or to a physical subset of 

computer components. Physical dedication refers to the use of multiple buses, each of which connects 

only a subset of modules. The potential advantage of physical dedication is high throughput, because 

there is less bus contention.A disadvantage is the increased size and cost of the system.    

Address and data information may be transmitted over the same set of lines using an Address 

Valid control line. At the beginning of a data transfer, the address is placed on the bus and the Address 

Valid line is activated. The address is then removed from the bus, and the same bus connections are 

used for the subsequent read or write data transfer. This method of using the same lines for multiple 

purposes is known as time multiplexing.   

  
Table 1.3 Elements of Bus Design  

The advantage of time multiplexing is the use of fewer lines, which saves space and, usually, cost. 

The disadvantage is that more complex circuitry is needed within each module.   

  

• METHOD OF ABITRATION. The various methods can be roughly classified as being 

either centralized or distributed. In a centralized scheme, a single hardware device, referred to as a 

bus controller or arbiter, is responsible for allocating time on the bus. In a distributed scheme, there 

is no central controller. Rather, each module contains access control logic and the modules act 

together to share the bus. With both methods of arbitration, the purpose is to designate either the 

processor or an I/O module, as master. The master may then initiate a data transfer (e.g., read or 

write) with some other device, which acts as slave for this particular exchange.   

• TIMING Buses use either synchronous timing or asynchronous timing. With 
synchronous timing, the occurrence of events on the bus is determined by a clock. A single 1–0 
transmission is referred to as a clock cycle or bus cycle and defines a time slot.  
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Figure 1.20 Timing of Synchronous Bus Operations  

  Figure 3.19 shows a typical, but simplified, timing diagram for synchronous read and write. In this 

simple example, the processor places a memory address on the address lines during the first clock 

cycle and may assert various status lines. Once the address lines have stabilized, the processor issues 

an address enable signal. For a read operation, the processor issues a read command at the start of 

the second cycle. A memory module recognizes the address and, after a delay of one cycle, places the 

data on the data lines. The processor reads the data from the data lines and drops the read signal. For 

a write operation, the processor puts the data on the data lines at the start of the second cycle, and 

issues a write command after the data lines have stabilized. The memory module copies the 

information from the data lines during the third clock cycle.   

With asynchronous timing, the occurrence of one event on a bus follows and depends on the 

occurrence of a previous event.   
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Figure 1.21 Timing of Asynchronous Bus Operations  

  

In the simple read example of Figure 1.21a, the processor places address and status signals on 

the bus. After pausing for these signals to stabilize, it issues a read command, indicating the presence 

of valid address and control signals. The appropriate memory decodes the address and responds by 

placing the data on the data line. Once the data lines have stabilized, the memory module asserts the 

acknowledged line to signal the processor that the data are available. Once the master has read the 

data from the data lines, it deasserts the read signal. This causes the memory module to drop the data 

and acknowledge lines. Finally, once the acknowledge line is dropped, the master removes the 

address information.   

Figure 1.21b shows a simple asynchronous write operation. In this case, the master places the 

data on the data line at the same time that is puts signals on the status and address lines. The memory 

module responds to the write command by copying the data from the data lines and then asserting 

the acknowledge line. The master then drops the write signal and the memory module drops the 

acknowledge signal.   

Synchronous timing is simpler to implement and test. However, it is less flexible than 

asynchronous timing. With asynchronous timing, a mixture of slow and fast devices, using older and 

newer technology, can share a bus.   

• BUS WIDTH The width of the data bus has an impact on system performance: The wider the 

data bus, the greater the number of bits transferred at one time. The width of the address bus 
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has an impact on system capacity: the wider the address bus, the greater the range of locations 

that can be referenced.   

• DATA TRANSFER TYPE Finally, a bus supports various data transfer types, as illustrated in 

Figure 1.22.  
  

  
Figure 1.22 Bus Data Transfer Types  

  

In the case of a multiplexed address/data bus, the bus is first used for specifying the address and 

then for transferring the data. For a read operation, there is typically a wait while the data are being 

fetched from the slave to be put on the bus. For either a read or a write, there may also be a delay if 

it is necessary to go through arbitration to gain control of the bus for the remainder of the operation.  

In the case of dedicated address and data buses, the address is put on the address bus and 

remains there while the data are put on the data bus. For a write operation, the master puts the data 

onto the data bus as soon as the address has stabilized and the slave has had the opportunity to 

recognize its address. For a read operation, the slave puts the data onto the data bus as soon as it 

has recognized its address and has fetched the data.   

A read–modify–write operation is simply a read followed immediately by a write to the same 

address   

Read-after-write is an indivisible operation consisting of a write followed immediately by a read 

from the same address.   
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Some bus systems also support a block data transfer. The first data item is transferred to or 

from the specified address; the remaining data items are transferred to or from subsequent 

addresses.   
   

❖ PCI (PHERIPHERAL COMPONENT INTERCONNECT)  
  

The peripheral component interconnect (PCI) is a popular high-bandwidth, 

processorindependent bus that can function as a peripheral bus. The current standard allows the use 

of up to 64 data lines at 66 MHz, for a raw transfer rate of 528 MByte/s, or 4.224 Gbps. It requires 

very few chips to implement and supports other buses attached to the PCI bus.   

Intel began work on PCI in 1990 for its Pentium-based systems. The industry association, the PCI 

Special Interest Group (SIG), developed and further and maintained the compatibility of the PCI 

specifications. PCI is designed to support a variety of microprocessor-based configurations, including 

both single- and multiple-processor systems. It makes use of synchronous timing and a centralized 

arbitration scheme.   

  
Figure 1.23 Example PCI Configurations  

Figure 1.23a shows a typical use of PCI in a single-processor system. The bridge acts as a data 

buffer so that the speed of the PCI bus may differ from that of the processor’s I/O capability. In a 

multiprocessor system (Figure 1.23b), one or more PCI configurations may be connected by bridges 
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to the processor’s system bus. Again, the use of bridges keeps the PCI independent of the processor 

speed yet provides the ability to receive and deliver data rapidly.   

Bus Structure   

PCI may be configured as a 32- or 64-bit bus. There are 49 mandatory signal lines for PCI which are 

divided into the following functional groups:   

• System pins: Include the clock and reset pins.   

• Address and data pins: Include 32 lines that are time multiplexed for addresses and data. 

The other lines in this group are used to interpret and validate the signal lines that carry the addresses 

and data.   

• Interface control pins: Control the timing of transactions and provide coordination among 

initiators and targets.  

• Arbitration pins: Unlike the other PCI signal lines, these are not shared lines. Rather, each PCI 

master has its own pair of arbitration lines that connect it directly to the PCI bus arbiter.   

• Error reporting pins: Used to report parity and other errors.   

In addition, the PCI specification defines 51 optional signal lines, divided into the following 

functional groups:   

• Interrupt pins: These are provided for PCI devices that must generate requests for service. 

As with the arbitration pins, these are not shared lines. Rather, each PCI device has its own interrupt 

line or lines to an interrupt controller.  

• Cache support pins: These pins are needed to support a memory on PCI that can be cached 

in the processor or another device.  

• 64-bit bus extension pins: Include 32 lines that are time multiplexed for ad dresses and data 

and that are combined with the mandatory address/data lines to form a 64-bit address/data bus.  

• JTAG/boundary scan pins: These signal lines support testing procedures.  

  
  

 PCI Commands   

Bus activity occurs in the form of transactions between an initiator, or master, and a target. 

When a bus master acquires control of the bus, it determines the type of transaction that will occur 

next The commands are as follows:   

• Interrupt Acknowledge   

• Special Cycle   

• I/O Read   

• I/O Write   

• Memory Read   

• Memory Read Line   

• Memory Read Multiple   

• Memory Write   

• Memory Write and Invalidate   

• Configuration Read   
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• Configuration Write   

• Dual address Cycle   

  

Interrupt Acknowledge is a read command intended for the device that functions as an 

interrupt controller on the PCI bus.   

The Special Cycle command is used by the initiator to broadcast a message to one or more 

targets.   

The I/O Read and Write commands are used to transfer data between the initiator and an I/O 

controller.  

The memory read and write commands are used to specify the transfer of a burst of data, 

occupying one or more clock cycles. The three memory read commands have the uses outlined in 

Table 1.4.  

  
Table 1.4 Interpretations of PCI Read Commands  

 The Memory Write command is used to transfer data in one or more data cycles to memory. 

The Memory Write and Invalidate command transfers data in one or more cycles to memory. In 

addition, it guarantees that at least one cache line is written.   

The two configuration commands enable a master to read and update configuration parameters 

in a device connected to the PCI.   

The Dual Address Cycle command is used by an initiator to indicate that it is using 64-bit 

addressing.  

Data Transfers   

Every data transfer on the PCI bus is a single transaction consisting of one address phase and one 

or more data phases.   

Figure 1.24 shows the timing of the read transaction. All events are synchronized to the falling 

transitions of the clock, which occur in the middle of each clock cycle. Bus devices sample the bus lines 

on the rising edge at the beginning of a bus cycle. The following are the significant events, labeled on 

the diagram:   

a. Once a bus master has gained control of the bus, it may begin the transaction by 

asserting FRAME. This line remains asserted until the initiator is ready to complete the 

last data phase. The initiator also puts the start address on the address bus, and the 

read command on the C/BE lines.   

b. At the start of clock 2, the target device will recognize its address on the AD lines.   
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c. The initiator ceases driving the AD bus. A turnaround cycle (indicated by the two 

circular arrows) is required on all signal lines that may be driven by more than one 

device, so that the dropping of the address signal will prepare the bus for use by the 

target device.  The initiator changes the information on the C/BE lines to designate 

which AD lines are to be used for transfer for the currently addressed data (from 1 to  

4 bytes). The initiator also asserts IRDY to indicate that it is ready for the first data item.   

d. The selected target asserts DEVSEL to indicate that it has recognized its address and 
will respond. It places the requested data on the AD lines and asserts TRDY to indicate 
that valid data are present on the bus.   

e. The initiator reads the data at the beginning of clock 4 and changes the byte enable 

lines as needed in preparation for the next read.   

f. In this example, the target needs some time to prepare the second block of data for 
transmission. Therefore, it deasserts TRDY to signal the initiator that there will not be 
new data during the coming cycle.Accordingly,the initiator does not read the data lines 
at the beginning of the fifth clock cycle and does not change byte enable during that 
cycle. The block of data is read at beginning of clock 6.  

g. During clock 6, the target places the third data item on the bus. However, in this 
example, the initiator is not yet ready to read the data item (e.g., it has a temporary 
buffer full condition). It therefore deasserts IRDY. This will cause the target to maintain 
the third data item on the bus for an extra clock cycle.   

h. The initiator knows that the third data transfer is the last, and so it deasserts FRAME 
to signal the target that this is the last data transfer. It also asserts IRDY to signal that 
it is ready to complete that transfer.   

i. The initiator deasserts IRDY, returning the bus to the idle state, and the target deasserts 

TRDY and DEVSEL.  
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Figure 1.24 PCI Read Operation  
  
  
  
  
  

Arbitration   

PCI makes use of a centralized, synchronous arbitration scheme in which each master has a unique 

request (REQ) and grant (GNT) signal. These signal lines are attached to a central arbiter (Figure  

1.25) and a simple request–grant handshake is used to grant access to the bus.   

  

  
Figure 1.25 PCI Bus Arbiter  

  
  

Figure 1.26 is an example in which devices A and B are arbitrating for the bus. The following 

sequence occurs:   

a. At some point before the start of clock 1, A has asserted its REQ signal.  

b. During clock cycle 1, B requests use of the bus by asserting its REQ signal.   

c. At the same time, the arbiter asserts GNT-A to grant bus access to A.   

d. Bus master A samples GNT-A at the beginning of clock 2 and learns that it has been granted bus 
access. It also finds IRDY and TRDY deasserted, which indicates that the bus is idle. It also continues 
to assert REQ-A, because it has a second transaction to perform after this one.  

e. The bus arbiter samples all REQ lines at the beginning of clock 3 and makes an arbitration decision 
to grant the bus to B for the next transaction. It then asserts GNT-B and deasserts GNT-A. B will not 
be able to use the bus until it returns to an idle state.   

f. A deasserts FRAME to indicate that the last data transfer is in progress.It puts the data on the data 

bus and signals the target with IRDY.The target reads the data at the beginning of the next clock 

cycle.   

g. At the beginning of clock 5, B finds IRDY and FRAME deasserted and so is able to take control of 

the bus by asserting FRAME. It also deasserts its REQ line, because it only wants to perform one 

transaction.   

Subsequently, master A is granted access to the bus for its next transaction.   
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Figure 1.26 PCI Bus Arbitration Between Two Masters  
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UNIT-2  

MACHINE INSTRUCTION SET  

 

❖   ADDRE SSING MODES   

  
Figure 2.1 Addressing Modes   
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The address field or fields in a typical instruction format are relatively small. We should be able to 

reference a large range of locations in main memory. For this, a variety of addressing techniques has been 

employed. The most common addressing techniques are:   

• Immediate  

• Direct  

• Indirect  

• Register  

• Register indirect  

• Displacement  

• Stack  
  

  
Table 2.1Basic Addressing Modes  

Table 2.1 indicates the address calculation performed for each addressing mode.  Different opcodes will 

use different addressing modes. Also, one or more bits in the instruction format can be used as a mode field. 

The value of the mode field determines which addressing mode is to be used.   
  

Immediate Addressing   

The simplest form of addressing is immediate addressing, in which the operand value is present in the 

instruction   

Operand = A   

This mode can be used to define and use constants or set initial values of variables   

The advantage of immediate addressing is that no memory reference other than the instruction fetch 

is required to obtain the operand, thus saving one memory or cache cycle in the instruction cycle. The 

disadvantage is that the size of the number is restricted to the size of the address field, which, in most 

instruction sets, is small compared with the word length.  

Direct Addressing   

A very simple form of addressing is direct addressing, in which the address field contains the effective 

address of the operand:   

EA = A   

The advantage is it requires only one memory reference and no special calculation. The disadvantage 

is that it provides only a limited address space.   
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Indirect Addressing   

With direct addressing, the length of the address field is usually less than the word length, thus limiting the 

address range. One solution is to have the address field refer to the address of a word in memory, which in 

turn contains a full-length address of the operand. This is known as indirect addressing:  EA = (A)   

As defined earlier, the parentheses are to be interpreted as meaning contents of.  
N  

The obvious advantage of this approach is that for a word length of N, an address space of 2 is now 

available. The disadvantage is that instruction execution requires two memory references to fetch the 

operand: one to get its address and a second to get its value.   

A rarely used variant of indirect addressing is multilevel or cascaded indirect addressing:   

EA = ( Á (A) Á )   

Register Addressing   

Register addressing is similar to direct addressing. The only difference is that the address field refers to a 

register rather than a main memory address:   

EA = R   

To clarify, if the contents of a register address field in an instruction is 5, then register R5 is the intended 

address, and the operand value is contained in R5.   
  

The advantages of register addressing are that (1) only a small address field is needed in the instruction, 

and (2) no time-consuming memory references are required because the memory access time for a register 

internal to the processor is much less than that for a main memory address. The disadvantage of register 

addressing is that the address space is very limited.   
    

Register Indirect Addressing   
Just as register addressing is analogous to direct addressing, register indirect addressing is analogous to 

indirect addressing. In both cases, the only difference is whether the address field refers to a memory 

location or a register.Thus,for register indirect address,   

EA = (R)  

The advantages and limitations of register indirect addressing are basically the same as for indirect 

addressing. In both cases, the address space limitation (limited range of addresses) of the address field is 

overcome by having that field refer to a word-length location containing an address. In addition, register 

indirect addressing uses one less memory reference than indirect addressing.   

  

Displacement Addressing   

A very powerful mode of addressing combines the capabilities of direct addressing and register indirect 

addressing. We will refer to this as displacement addressing:  EA = A + (R)  

Displacement addressing requires that the instruction have two address fields, at least one of which is 

explicit. The value contained in one address field (value = A) is used directly. The other address field, or 

an implicit reference based on opcode, refers to a register whose contents are added to A to produce the 

effective address.   

We will describe three of the most common uses of displacement addressing:   

• Relative addressing   

• Base-register addressing   
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• Indexing   
  

RELATIVE ADDRESSING For relative addressing, also called PC-relative addressing, the implicitly 

referenced register is the program counter (PC). That is, the next instruction address is added to the address 

field to produce the EA. Thus, the effective address is a displacement relative to the address of the 

instruction.   

BASE-REGISTER ADDRESSING For base-register addressing, the interpretation is the following: The 

referenced register contains a main memory address, and the address field contains a displacement (usually 

an unsigned integer representation) from that address. The register reference may be explicit or implicit.   

INDEXING For indexing, the interpretation is typically the following: The address field references a main 

memory address, and the referenced register contains a positive displacement from that address. This usage 

is just the opposite of the interpretation for base-register   

An important use of indexing is to provide an efficient mechanism for performing iterative operations. 

Consider, for example, a list of numbers stored starting at location A. Suppose that we would like to add 1 

to each element on the list. We need to fetch each value, add 1 to it, and store it back. The sequence of 

effective addresses that we need is A,A + 1, A + 2, . . ., up to the last location on the list. With indexing, 

this is easily done. The value A is stored in the instruction’s address field, and the chosen register, called 

an index register, is initialized to 0. After each operation, the index register is incremented by 1.  

 Because index registers are commonly used for such iterative tasks, it is typical that there is a need to 

increment or decrement the index register after each reference to it. Because this is such a common 

operation, some systems will automatically do this as part of the same instruction cycle.This is known as 

autoindexing  

.. If general-purpose registers are used, the autoindex operation may need to be signaled by a bit in the 

instruction.Autoindexing using increment can be depicted as follows.   

EA = A + (R) (R) ; (R) + 1  

In some machines, both indirect addressing and indexing are provided, and it is possible to employ 

both in the same instruction. There are two possibilities: the indexing is performed either before or after the 

indirection.   

If indexing is performed after the indirection, it is termed postindexing:   

EA = (A) + (R)  

First, the contents of the address field are used to access a memory location containing a direct address.  

This address is then indexed by the register value.   

With preindexing, the indexing is performed before the indirection:   

EA = (A + (R))  

An address is calculated as with simple indexing. In this case, however, the calculated address contains not 

the operand, but the address of the operand.   
  

Stack Addressing   

The final addressing mode that we consider is stack addressing. It is sometimes referred to as a 

pushdown list or last-in-first-out queue. The stack is a reserved block of locations.       

 Items are appended to the top of the stack so that, at any given time, the block is partially filled.  

Associated with the stack is a pointer whose value is the address of the top of the stack. Alternatively, the 

top two elements of the stack may be in processor registers, in which case the stack pointer references the 

third element of the stack.  
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The stack pointer is maintained in a register. Thus, references to stack locations in memory are in fact 

register indirect addresses.   

The stack mode of addressing is a form of implied addressing. The machine instructions need not  

include a memory reference but implicitly operate on the top of the stack  

❖ X86 ADDRESSING MODES  

The x86 address translation mechanism produces an address, called a virtual or effective address, that 

is an offset into a segment. The sum of the starting address of the segment and the effective address produces 

a linear address. If paging is being used, this linear address must pass through a page-translation mechanism 

to produce a physical address.  

The x86 is equipped with a variety of addressing modes intended to allow the efficient execution of 

high-level languages. Figure 2.2 indicates the logic involved. The segment register determines the segment 

that is the subject of the reference. There are six segment registers. Each segment register holds an index 

into the segment descriptor table which holds the starting address of the corresponding segments. With each 

segment register is a segment descriptor register which records the access rights for the segment as well as 

the starting address and limit (length) of the segment. In addition, there are two registers that may be used 

in constructing an address: the base register and the index register.  

Table 2.2 lists the x86 addressing modes.   

• Immediate mode, the operand is included in the instruction. The operand can be a byte, word, or 

doubleword of data.   

• Register operand mode, the operand is located in a register. For general instructions, such as data 

transfer, arithmetic, and logical instructions, the operand can be one of the 32-bit general registers (EAX, 

EBX, ECX, EDX, ESI, EDI, ESP, EBP), one of the 16-bit general registers (AX, BX, CX, DX, SI, DI, SP, 

BP), or one of the 8bit general registers (AH, BH, CH, DH, AL, BL, CL, DL). There are also some 

instructions that reference the segment selector registers (CS, DS, ES, SS, FS, GS).   

• Displacement mode, the operand’s offset (the effective address of Figure 11.2) is contained as part 

of the instruction as an 8-, 16-, or 32-bit displacement. The displacement addressing mode is found on few 

machines because, as mentioned earlier, it leads to long instructions. In the case of the x86, the displacement 

value can be as long as 32 bits, making for a 6-byte instruction. Displacement addressing can be useful for 

referencing global variables.   

The remaining addressing modes are indirect, in the sense that the address portion of the instruction tells 

the processor where to look to find the address.  

• Base mode specifies that one of the 8-, 16-, or 32-bit registers contains the effective address. This is 

equivalent to what we have referred to as register indirect addressing.   

• Base with displacement mode, the instruction includes a displacement to be added to a base register, 

which may be any of the general-purpose registers.   

Examples of uses of this mode are as follows:   

• Used by a compiler to point to the start of a local variable area   

• Used to index into an array when the element size is not 1, 2, 4, or 8 bytes and which therefore cannot 

be indexed using an index register.   

• Used to access a field of a record.   
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Figure 2.2 x86 Addressing mode caluclation  

• Scaled index with displacement mode, the instruction includes a displacement to be added to a 

register, in this case called an index register. The index register may be any of the general-purpose registers 

except the one called ESP, which is generally used for stack processing. In calculating the effective address, 

the contents of the index register are multiplied by a scaling factor of 1, 2, 4, or 8, and then added to a 

displacement.   

A scaling factor of 2 can be used for an array of 16-bit integers. A scaling factor of 4 can be used for 

32-bit integers or floating-point numbers. Finally, a scaling factor of 8 can be used for an array of double-

precision floating-point numbers.   

• Base with index and displacement mode sums the contents of the base register, the index register, 

and a displacement to form the effective address. Again, the base register can be any generalpurpose register 

and the index register can be any general-purpose register except ESP.   

This mode can also be used to support a two-dimensional array; in this case, the displacement points to 

the beginning of the array and each register handles one dimension of the array.   

• Based scaled index with displacement mode sums the contents of the index register multiplied by 

a scaling factor, the contents of the base register, and the displacement.This is useful if an array is stored in 

a stack frame. This mode also provides efficient indexing of a two-dimensional array when the array 

elements are 2, 4, or 8 bytes in length.   
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• Relative addressing can be used in transfer-of-control instructions. A displacement is added to the 

value of the program counter, which points to the next instruction.  

  
Table 2.2 x86 Addressing modes  

❖ ARM Addressing Modes   

In the ARM architecture the addressing modes are most conveniently classified with respect to the type of  

1 instruction.  

1. LOAD/STORE ADDRESSING Load and store instructions are the only instructions that reference 

memory. This is always done indirectly through a base register plus offset.  There are three 

alternatives with respect to indexing (Figure 2.3):   

• Offset: For this addressing method, indexing is not used. An offset value is added to or subtracted 

from the value in the base register to form the memory address.   

As an example Figure 2.3a illustrates this method with the assembly language instruction  STRB 

r0,[r1,#12].   

This is the store byte instruction. In this case the base address is in register r1 and the displacement is 

an immediate value of decimal 12. The resulting address (base plus offset) is the location where the least 

significant byte from r0 is to be stored.   

• Preindex: The memory address is formed in the same way as for offset addressing.The memory 

address is also written back to the base register.In other words, the base register value is incremented or 

decremented by the offset value. Figure 2.3b illustrates this method with the assembly language instruction  

 STRBr0,[r1,#12]!.   

The exclamation point signifies preindexing.   

• Postindex: The memory address is the base register value.An offset is added to or subtracted from 

the base register value and the result is written back to the base register. Figure 2.3c illustrates this method 

with the assembly language instruction  

 STRB r0, [r1], #12.   
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The value in the offset register is scaled by one of the shift operators: Logical Shift Left, Logical  

Shift Right, Arithmetic Shift Right, Rotate Right, or Rotate Right Extended (which includes the carry bit in 

the rotation). The amount of the shift is specified as an immediate value in the instruction.   

1. DATA PROCESSING INSTRUCTION ADDRESSING Data processing instructions use either 

register addressing of a mixture of register and immediate addressing. For register addressing, the value in 

one of the register operands may be scaled using one of the five shift operators defined in the preceding 

paragraph.   

2. BRANCH INSTRUCTIONS The only form of addressing for branch instructions is immediate 

addressing. The branch instruction contains a 24-bit value. For address calculation, this value is shifted left 

2 bits, so that the address is on a word boundary. Thus the effective address range is ;32 MB from the 

program counter.  

3. LOAD/STORE MULTIPLE ADDRESSING Load multiple instructions load a subset of the 

general-purpose registers from memory. Store multiple instructions store a subset of the general-purpose 

registers to memory.  

  
Figure 2.3 ARM Indexing Methods  

  

The list of registers for the load or store is specified in a 16-bit field in the instruction with each bit 

corresponding to one of the 16 registers. Load and Store Multiple addressing modes produce a sequential 
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range of memory addresses. The lowest-numbered register is stored at the lowest memory address and the 

highest-numbered register at the highest memory address. Four addressing modes are used   

(Figure 2.4): increment after, increment before, decrement after, and decrement before. A base 

register specifies a main memory address where register values are stored in or loaded from in ascending 

(increment) or descending (decrement) word locations. Incrementing or decrementing starts either before 

or after the first memory access.   
  

  
Figure 2.4 ARM Load/Store Multiple addressing  

❖ INSTRUCTION FORMATS  

  

An instruction format defines the layout of the bits of an instruction. An instruction format must 

include an opcode and, implicitly or explicitly, zero or more operands. Each explicit operand is referenced 

using one of the addressing modes. Key design issues in X86 instruction formats are:  

Instruction Length   

The most basic design issue to be faced is the instruction format length which is affected by, memory 

size, memory organization, bus structure, processor complexity, and processor speed.  Beyond this basic 

trade-off, there are other considerations.   

• Either the instruction length should be equal to the memory-transfer length or one should be a multiple 

of the other.  

• Memory transfer rate has not kept up with increases in processor speed.   

• Memory can become a bottleneck if the processor can execute instructions faster than it can fetch them. 

One solution to this problem is to use cache memory and another is to use shorter instructions.   

• Instruction length should be a multiple of the character length, which is usually 8 bits, and of the length 

of fixed-point numbers.   
  

Allocation of Bits   

An equally difficult issue is how to allocate the bits in that format. For a given instruction length, 

more opcodes obviously mean more bits in the opcode field. For an instruction format of a given length, 

this reduces the number of bits available for addressing. There is one interesting refinement to this tradeoff, 

and that is the use of variable-length opcodes.   

In this approach, there is a minimum opcode length but, for some opcodes, additional operations 

may be specified by using additional bits in the instruction. For a fixed-length instruction, this leaves fewer 

bits for addressing. Thus, this feature is used for those instructions that require fewer operands and/or less 

powerful addressing.  

The following interrelated factors go into determining the use of the addressing bits.   

• Number of addressing modes: Sometimes an addressing mode can be indicated implicitly. In other 

cases, the addressing modes must be explicit, and one or more mode bits will be needed.   
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• Number of operands: Typical instructions on today’s machines provide for two operands. Each  
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operand address in the instruction might require its own mode indicator, or the use of a mode indicator 

could be limited to just one of the address fields.   

• Register versus memory: A machine must have registers so that data can be brought into the 

processor for processing. With a single user-visible register (usually called the accumulator), one operand 

address is implicit and consumes no instruction bits. However, single-register programming is awkward 

and requires many instructions. Even with multiple registers, only a few bits are needed to specify the 

register. The more that registers can be used for operand references, the fewer bits are needed  

• Number of register sets: Most contemporary machines have one set of general-purpose registers, 

with typically 32 or more registers in the set. These registers can be used to store data and can be used to 

store addresses for displacement addressing   

• Address range: For addresses that reference memory, the range of addresses that can be referenced 

is related to the number of address bits. Because this imposes a severe limitation, direct addressing is rarely 

used. With displacement addressing, the range is opened up to the length of the address register   

• Address granularity: For addresses that reference memory rather than registers, another factor is 

the granularity of addressing. In a system with 16- or 32-bit words, an address can reference a word or a 

byte at the designer’s choice. Byte addressing is convenient for character manipulation but requires, for a 

fixed-size memory, more address bits. Thus, the designer is faced with a host of factors to consider and 

balance.  

❖ x86 Instruction Formats   

The x86 is equipped with a variety of instruction formats. Figure 2.5 illustrates the general 

instruction format. Instructions are made up of from zero to four optional instruction prefixes, a 1- or 2byte 

opcode, an optional address specifier (which consists of the ModR/m byte and the Scale Index byte) an 

optional displacement, and an optional immediate field.   

  
  

Figure 2.5 X86 Instruction Format  

  

• Instruction prefixes: The instruction prefix, if present, consists of the LOCK prefix or one of the 

repeat prefixes. The LOCK prefix is used to ensure exclusive use of shared memory in multiprocessor 

environments. The repeat prefixes specify repeated operation of a string, which enables the x86 to process 

strings much faster than with a regular software loop.   
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There are five different repeat prefixes: REP, REPE, REPZ, REPNE, and REPNZ. When the absolute 

REP prefix is present, the operation specified in the instruction is executed repeatedly on successive 

elements of the string; the number of repetitions is specified in register CX.   

• Segment override: Explicitly specifies which segment register an instruction should use, overriding 

the default segment-register selection generated by the x86 for that instruction.   

• Operand size: An instruction has a default operand size of 16 or 32 bits, and the operand prefix 

switches between 32-bit and 16-bit operands.   

• Address size: The processor can address memory using either 16- or 32-bit addresses. The address 

size determines the displacement size in instructions and the size of address offsets generated during 

effective address calculation.   

• Opcode: The opcode field is 1, 2, or 3 bytes in length. The opcode may also include bits that specify 

if data is byte- or full-size (16 or 32 bits depending on context), direction of data operation (to or from 

memory), and whether an immediate data field must be sign extended.   

• ModR/m: This byte, and the next, provide addressing information. The ModR/m byte specifies 

whether an operand is in a register or in memory; if it is in memory, then fields within the byte specify the 

addressing mode to be used. The ModR/m byte consists of three fields:   

The Mod field (2 bits) combines with the r/m field to form 32 possible values: 8 registers and 24 

indexing modes;  the Reg/Opcode field (3 bits) specifies either a register number or three more bits of 

opcode information; the r/m field (3 bits) can specify a register as the location of an operand, or it can form 

part of the addressing-mode encoding in combination with the Mod field.   

• SIB: Certain encoding of the ModR/m byte specifies the inclusion of the SIB byte to specify fully 

the addressing mode.The SIB byte consists of three fields: The Scale field (2 bits) specifies the scale factor 

for scaled indexing; the Index field (3 bits) specifies the index register; the Base field (3 bits) specifies the 

base register.   

• Displacement: When the addressing-mode specifier indicates that a displacement is used, an 8-, 

16-, or 32-bit signed integer displacement field is added.   

• Immediate: Provides the value of an 8-, 16-, or 32-bit operand  

Several comparisons may be useful here.   

In the x86 format, the addressing mode is provided as part of the opcode sequence rather than with 

each operand. Because only one operand can have address-mode information, only one memory operand 

can be referenced in an instruction. In contrast, the VAX carries the address-mode information with each 

operand, allowing memory-to-memory operations. The x86 instructions are therefore more compact. 

However, if a memory-to-memory operation is required, the VAX can accomplish this in a single 

instruction.   

The x86 format allows the use of not only 1-byte, but also 2-byte and 4-byte offsets for indexing. 

Although the use of the larger index offsets results in longer instructions, this feature provides needed 

flexibility.   
  

❖ PROCESSOR ORGANISATION  

To understand the organization of the processor, let us consider the requirements placed on the 

processor, the things that it must do:   

• Fetch instruction: The processor reads an instruction from memory (register, cache, main 

memory).   

• Interpret instruction: The instruction is decoded to determine what action is required.   

• Fetch data: The execution of an instruction may require reading data from memory or an I/O 

module.   

• Process data: The execution of an instruction may require performing some arithmetic or logical 

operation on data.   
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• Write data: The results of an execution may require writing data to memory or an I/O module.   

  

To do these things, it should be clear that the processor needs to store some data temporarily. In 

other words, the processor needs a small internal memory.  

Figure 2.6 is a simplified view of a processor, indicating its connection to the rest of the system via 

the system bus. The major components of the processor are an arithmetic and logic unit (ALU) and a control 

unit (CU). The ALU does the actual computation or processing of data. The control unit controls the 

movement of data and instructions into and out of the processor and controls the operation of the ALU. In 

addition, the figure shows a minimal internal memory, consisting of a set of storage locations, called 

registers.  
  

  
Figure 2.6 The CPU With System Bus  

Figure 2.7 is a slightly more detailed view of the processor. The data transfer and logic control  

paths are indicated, including internal processor bus which is needed to transfer data between the various  

registers and the ALU because the ALU in fact operates only on data in the internal processor memory.  

  

2.7Internal Structure of the CPU  

❖ REGISTER ORGANISATION  
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A computer system employs a memory hierarchy. At higher levels of the hierarchy, memory is 

faster, smaller, and more expensive (per bit). Within the processor, there is a set of registers that function 

as a level of memory above main memory and cache in the hierarchy. The registers in the processor perform 

two roles:   

• User-visible registers: Enable the machine- or assembly language programmer to minimize main 

memory references by optimizing use of registers.   

• Control and status registers: Used by the control unit to control the operation of the processor and 

by privileged, operating system programs to control the execution of programs.   
    

User-Visible Registers   

A user-visible register is one that may be referenced by means of the machine language that the processor 

executes. We can characterize these in the following categories:   

• General purpose   

• Data   

• Address   

• Condition codes   

General-purpose registers can be assigned to a variety of functions by the programmer. Sometimes 

their use within the instruction set is orthogonal to the operation. That is, any general-purpose register can 

contain the operand for any opcode. This provides true general-purpose register use. There may be dedicated 

registers for floating-point and stack operations.  

In some cases, general-purpose registers can be used for addressing functions (e.g., register indirect, 

displacement).   

Data registers may be used only to hold data and cannot be employed in the calculation of an 

operand address.   

Address registers may themselves be somewhat general purpose, or they may be devoted to a 

particular addressing mode. Examples include the following:   

• Segment pointers: In a machine with segmented addressing, a segment register holds the 

address of the base of the segment.  

• Index registers: These are used for indexed addressing and may be auto indexed.   

• Stack pointer: If there is user-visible stack addressing, then typically there is a dedicated 

register that points to the top of the stack.   
  

There are several design issues to be addressed here.   

• An important issue is whether to use completely general-purpose registers or to specialize their use.   

• Another design issue is the number of registers, general purpose or data plus address, to be provided. 

Again, this affects instruction set design because more registers require more operand specifier bits.   

• Finally, there is the issue of register length. Registers that must hold addresses obviously must be 

at least long enough to hold the largest address. Data registers should be able to hold values of most 

data types. Some machines allow two contiguous registers to be used as one for holding double-

length values.   

Condition codes (also referred to as flags):  Condition codes are bits set by the processor hardware as 

the result of operations. For example, an arithmetic operation may produce a positive, negative, zero, or 

overflow result. In addition to the result itself being stored in a register or memory, a condition code is also 

set. The code may subsequently be tested as part of a conditional branch operation.   

Table 2.3, lists key advantages and disadvantages of condition codes  
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Table 2.3 Condition code Advantages and Disadvantages  

Control and Status Registers   

There are a variety of processor registers that are employed to control the operation of the processor. 

Most of these, on most machines, are not visible to the user. Some of them may be visible to machine 

instructions executed in a control or operating system mode.  Four Registers are essential for instruction 

Execution  

• Program counter (PC): Contains the address of an instruction to be fetched   

• Instruction register (IR): Contains the instruction most recently fetched   

• Memory address register (MAR): Contains the address of a location in memory   

• Memory buffer register (MBR): Contains a word of data to be written to memory or the 

word most recently read   

Many processor designs include a register or set of registers, often known as the program status 

word (PSW), that contain status information. The PSW typically contains condition codes plus other status 

information. Common fields or flags include the following:   

• Sign: Contains the sign bit of the result of the last arithmetic operation.   

• Zero: Set when the result is 0.   

• Carry: Set if an operation resulted in a carry (addition) into or borrow (subtraction) out of 

a highorder bit. Used for multiword arithmetic operations.   

• Equal: Set if a logical compare result is equality.   

• Overflow: Used to indicate arithmetic overflow.   

• Interrupt Enable/Disable: Used to enable or disable interrupts.   

• Supervisor: Indicates whether the processor is executing in supervisor or user mode. 

Certain privileged instructions can be executed only in supervisor mode, and certain areas of memory 

can be accessed only in supervisor mode.   
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Example Microprocessor Register Organizations   

  
Figure 2.8 Example Microprocessor Register Organisation  

  

• It is instructive to examine and compare the register organization of comparable systems. In this 

section, we look at two 16-bit microprocessors that were designed at about the same time: the Motorola 

MC68000 and the Intel 8086. Figures 2.8 a and b depict the register organization of each; purely internal 

registers, such as a memory address register, are not shown.   

• The Motorola team wanted a very regular instruction set, with no special-purpose registers. The 

MC68000 partitions its 32-bit registers into eight data registers and nine address registers. The eight data 

registers are used primarily for data manipulation and are also used in addressing as index registers. The 

width of the registers allows 8-, 16-, and 32-bit data operations,determined by opcode. .The address 

registers contain 32-bit (no segmentation) addresses; two of these registers are also used as stack pointers, 

one for users and one for the operating system, depending on the current execution mode. Both registers 

are numbered 7, because only one can be used at a time. The MC68000 also includes a 32-bit program 

counter and a 16-bit status register.  

• The Intel 8086 takes a different approach to register organization. Every register is special purpose, 

although some registers are also usable as general purpose. The 8086 contains four 16-bit data registers that 

are addressable on a byte or 16-bit basis, and four 16-bit pointer and index registers. The data registers can 

be used as general purpose in some instructions. The four pointer registers are also used implicitly in a 

number of operations; each contains a segment offset. There are also four 16-bit segment registers. Three 

of the four segment registers are used in a dedicated, implicit fashion, to point to the segment of the current 
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instruction (useful for branch instructions), a segment containing data, and a segment containing a stack, 

respectively. The 8086 also includes an instruction pointer and a set of 1-bit status and control flags.    

❖ INSTRUCTION CYCLE  

An instruction cycle includes the following stages:   

• Fetch: Read the next instruction from memory into the processor.   

• Execute: Interpret the opcode and perform the indicated operation.   

• Interrupt: If interrupts are enabled and an interrupt has occurred, save the current process state and 

service the interrupt.   

We now elaborate instruction cycle. First, we must introduce one additional stage, known as the indirect 

cycle.   

The Indirect Cycle   

The execution of an instruction may involve one or more operands in memory, each of which requires 

a memory access. Further, if indirect addressing is used, then additional memory accesses are required. We 

can think of the fetching of indirect addresses as one more instruction stages. The result is shown in Figure 

2.9.  

  
Figure 2.9 Instruction Cycle  

After an instruction is fetched, it is examined to determine if any indirect addressing is involved. If so, the 

required operands are fetched using indirect addressing. Following execution, an interrupt may be processed 

before the next instruction fetch.   
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Figure 2.10 Instruction cycle State Diagram  

Another way to view this process is shown in Figure 2.10. Once an instruction is fetched, its operand 

specifiers must be identified. Each input operand in memory is then fetched, and this process may require 

indirect addressing. Register-based operands need not be fetched. Once the opcode is executed, a similar 

process may be needed to store the result in main memory.   

Data Flow   

The exact sequence of events during an instruction cycle depends on the design of the processor Let us 

assume that a processor that employs a memory address register (MAR), a memory buffer register (MBR), 

a program counter (PC), and an instruction register (IR).   

During the fetch cycle, an instruction is read from memory. Figure 2.11 shows the flow of data during 

this cycle. The PC contains the address of the next instruction to be fetched.This address is moved to the 

MAR and placed on the address bus.   
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Figure 2.11 Data Flow, Fetch cycle  

  

The control unit requests a memory read, and the result is placed on the data bus and copied into the 

MBR and then moved to the IR. Meanwhile, the PC is incremented by 1, preparatory for the next fetch.   

Once the fetch cycle is over, the control unit examines the contents of the IR to determine if it contains 

an operand specifier using indirect addressing. If so, an indirect cycle is performed. As shown in Figure 

2.12, this is a simple cycle. The right-most N bits of the MBR, which contain the address reference, are 

transferred to the MAR. Then the control unit requests a memory read, to get the desired address of the 

operand into the MBR.   

  
Figure 2.12 Data Flow, Indirect cycle  

The fetch and indirect cycles are simple and predictable. The execute cycle takes many forms; the form 

depends on which of the various machine instructions is in the IR. This cycle may involve transferring data 

among registers, read or write from memory or I/O, and/or the invocation of the ALU.     Like the fetch and 

indirect cycles, the interrupt cycle is simple and predictable (Figure 2.13). The current contents of the PC 

must be saved so that the processor can resume normal activity after the interrupt. Thus, the contents of the 

PC are transferred to the MBR to be written into memory. The special memory location reserved for this 

purpose is loaded into the MAR from the control unit. It might, for example, be a stack pointer. The PC is 

loaded with the address of the interrupt routine.As a result,the next instruction cycle will begin by fetching 

the appropriate instruction.   

  
Figure 2.13 Data Flow, Interrupt Cycle  
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UNIT-3  

❖ INSTRUCTION PIPELINING  

As computer systems evolve, greater performance can be achieved by taking advantage of 

improvements in technology, such as faster circuitry, use of multiple registers rather than a single 

accumulator, and the use of a cache memory. Another organizational approach is instruction pipelining in 

which new inputs are accepted at one end before previously accepted inputs appear as outputs at the other 

end.  

 

Figure 3.1a depicts this approach. The pipeline has two independent stages. The first stage fetches an 

instruction and buffers it. When the second stage is free, the first stage passes it the buffered instruction. 

While the second stage is executing the instruction, the first stage takes advantage of any unused memory 

cycles to fetch and buffer the next instruction. This is called instruction prefetch or fetch overlap.  

This process will speed up instruction execution only if the fetch and execute stages were of equal 

duration, the instruction cycle time would be halved. However, if we look more closely at this pipeline 

(Figure 3.1b), we will see that this doubling of execution rate is unlikely for 3 reasons:   

1 The execution time will generally be longer than the fetch time. Thus, the fetch stage may have to 

wait for some time before it can empty its buffer.   

2 A conditional branch instruction makes the address of the next instruction to be fetched unknown. 

Thus, the fetch stage must wait until it receives the next instruction address from the execute stage. The 

execute stage may then have to wait while the next instruction is fetched.   

3 When a conditional branch instruction is passed on from the fetch to the execute stage, the fetch 

stage fetches the next instruction in memory after the branch instruction. Then, if the branch is not taken, 

no time is lost .If the branch is taken, the fetched instruction must be discarded and a new instruction 

fetched.   

To gain further speedup, the pipeline must have more stages. Let us consider the following 

decomposition of the instruction processing.   

1. Fetch instruction (FI): Read the next expected instruction into a buffer.   

2. Decode instruction (DI): Determine the opcode and the operand specifiers.   
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3. Calculate operands (CO): Calculate the effective address of each source operand. This may 

involve displacement, register indirect, indirect, or other forms of address calculation.   

4. Fetch operands (FO): Fetch each operand from memory.   

5. Execute instruction (EI): Perform the indicated operation and store the result, if any, in the 

specified destination operand location.   

6. Write operand (WO): Store the result in memory.   

Figure 3.2  shows that a six-stage pipeline can reduce the execution time for 9 instructions from 54 time 

units to 14 time units.  

  
3.2 Timing Diagram for Instruction Pipeline Operation  

  

FO and WO stages involve a memory access. If the six stages are not of equal duration, there will be 

some waiting involved at various pipeline stages. Another difficulty is the conditional branch instruction, 

which can invalidate several instruction fetches. A similar unpredictable event is an interrupt.   

  
3.3 Timing Diagram for Instruction Pipeline Operation with interrupts  

Figure 3.3 illustrates the effects of the conditional branch, using the same program as Figure 3.2. 

Assume that instruction 3 is a conditional branch to instruction 15. Until the instruction is executed, there 
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is no way of knowing which instruction will come next. The pipeline, in this example, simply loads the next 

instruction in sequence (instruction 4) and proceeds.   

In Figure 3.2, the branch is not taken. In Figure 3.3, the branch is taken. This is not determined until 

the end of time unit 7.At this point, the pipeline must be cleared of instructions that are not useful. During 

time unit 8, instruction 15 enters the pipeline.   

No instructions complete during time units 9 through 12; this is the performance penalty incurred 

because we could not anticipate the branch. Figure 3.4 indicates the logic needed for pipelining to account 

for branches and interrupts.   

  
3.4 Six-stage CPU Instruction Pipeline  

Figure 3.5 shows same sequence of events, with time progressing vertically down the figure, and each 

row showing the state of the pipeline at a given point in time. In Figure 3.5a (which corresponds to Figure 

3.2), the pipeline is full at time 6, with 6 different instructions in various stages of execution, and remains 

full through time 9; we assume that instruction I9 is the last instruction to be executed. In Figure 3.5b, 

(which corresponds to Figure 3.3), the pipeline is full at times 6 and 7. At time 7, instruction 3 is in the 

execute stage and executes a branch to instruction 15. At this point, instructions I4 through I7 are flushed 

from the pipeline, so that at time 8, only two instructions are in the pipeline, I3 and I15.  For high-

performance in pipelining designer must still consider about :   

1 At each stage of the pipeline, there is some overhead involved in moving data from buffer to buffer 

and in performing various preparation and delivery functions. This overhead can appreciably lengthen the 

total execution time of a single instruction.   

2 The amount of control logic required to handle memory and register dependencies and to optimize 

the use of the pipeline increases enormously with the number of stages. This can lead to a situation where 

the logic controlling the gating between stages is more complex than the stages being controlled.   

3 Latching delay: It takes time for pipeline buffers to operate and this adds to instruction cycle time.   
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3.5 An Alternative Pipeline depiction  

Pipelining Performance  
Measures of pipeline performance and relative speedup:  

The cycle time t of an instruction pipeline is the time needed to advance a set of instructions one stage 

through the pipeline; each column in Figures 3.2 and 3.3 represents one cycle time.  The cycle time can be 

determined as   

t = max [ti] + d = tm + d 1 … i … k  

          where  ti = time delay of the circuitry in the ith stage of the pipeline  tm = maximum 

stage delay (delay through stage which experiences the largest delay)  k = number of 

stages in the instruction pipeline  

 d = time delay of a latch, needed to advance signals and data from one stage to the next  

 In general, the time delay d is equivalent to a clock pulse and tm W d. Now suppose that n instructions are 

processed, with no branches. Let Tk,n be the total time required for a pipeline with k stages to execute n 

instructions. Then   

Tk,n = [k + (n -1)]t    

A total of k cycles are required to complete the execution of the first instruction, and the remaining n  
2  

-1 instructions require n -1 cycles. This equation is easily verified from Figures 3.1. The ninth instruction 

completes at time cycle 14:   

14 = [6 + (9 -1)]  

Now consider a processor with equivalent functions but no pipeline, and assume that the instruction 

cycle time is kt. The speedup factor for the instruction pipeline compared to execution without the pipeline 

is defined as   
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❖ Pipeline Hazards  

A pipeline hazard occurs when the pipeline, or some portion of the pipeline, must stall because 

conditions do not permit continued execution. Such a pipeline stall is also referred to as a pipeline bubble. 

There are three types of hazards: resource, data, and control.   

RESOURCE HAZARDS A resource hazard occurs when two (or more) instructions that are already in the 

pipeline need the same resource. The result is that the instructions must be executed in serial rather than 

parallel for a portion of the pipeline. A resource hazard is sometime referred to as a structural hazard.   

Let us consider a simple example of a resource hazard.Assume a simplified five-stage pipeline, in 

which each stage takes one clock cycle. In Figure 3.6a which a new instruction enters the pipeline each 

clock cycle. Now assume that main memory has a single port and that all instruction fetches and data reads 

and writes must be performed one at a time. In this case, an operand read to or write from memory cannot 

be performed in parallel with an instruction fetch. This is illustrated in Figure 3.6b, which assumes that the 

source operand for instruction I1 is in memory, rather than a register. Therefore, the fetch instruction stage 

of the pipeline must idle for one cycle before beginning the instruction fetch for instruction I3. The figure 

assumes that all other operands are in registers.   
  

  

3.6 Example of Resource Hazard  

DATA HAZARDS A data hazard occurs when two instructions in a program are to be executed in sequence 

and both access a particular memory or register operand. If the two instructions are executed in strict 

sequence, no problem occurs but if the instructions are executed in a pipeline, then the operand value is to 

be updated in such a way as to produce a different result than would occur only with strict sequential 

execution of instructions. The program produces an incorrect result because of the use of pipelining.   

As an example, consider the following x86 machine instruction sequence:   

ADD EAX, EBX /* EAX = EAX + EBX SUB ECX, EAX /* ECX = ECX - EAX  

The first instruction adds the contents of the 32-bit registers EAX and EBX and stores the result in 

EAX. The second instruction subtracts the contents of EAX from ECX and stores the result in ECX.   
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Figure 3.7 shows the pipeline behaviour. The ADD instruction does not update register EAX until the 

end of stage 5, which occurs at clock cycle 5. But the SUB instruction needs that value at the beginning of 

its stage 2, which occurs at clock cycle 4. To maintain correct operation, the pipeline must stall for two 

clocks cycles. Thus, in the absence of special hardware and specific avoidance algorithms, such a data 

hazard results in inefficient pipeline usage. There are three types of data hazards;  

  
3.7 Example of Resource Hazard  

• Read after write (RAW), or true dependency:.A hazard occurs if the read takes place before the 

write operation is complete.   

• Write after read (RAW), or antidependency: A hazard occurs if the write operation completes 

before the read operation takes place.   

• Write after write (RAW), or output dependency: Two instructions both write to the same 

location. A hazard occurs if the write operations take place in the reverse order of the intended 

sequence.  The example of Figure 3.7 is a RAW hazard.   

CONTROL HAZARDS A control hazard, also known as a branch hazard, occurs when the pipeline makes 

the wrong decision on a branch prediction and therefore brings instructions into the pipeline that must 

subsequently be discarded.   

❖ Dealing with Branches   

Until the instruction is actually executed, it is impossible to determine whether the branch will be taken or 

not. A variety of approaches have been taken for dealing with conditional branches:   

• Multiple streams   

• Prefetch branch target   

• Loop buffer   

• Branch prediction   

• Delayed branch   
  

MULTIPLE STREAMS A simple pipeline suffers a penalty for a branch instruction because it must choose 

one of two instructions to fetch next and may make the wrong choice.  

 A brute-force approach is to replicate the initial portions of the pipeline and allow the pipeline to 

fetch both instructions, making use of two streams. There are two problems with this approach:   

• With multiple pipelines there are contention delays for access to the registers and to memory.   

• Additional branch instructions may enter the pipeline (either stream) before the original branch 

decision is resolved. Each such instruction needs an additional stream.   

Examples of machines with two or more pipeline streams are the IBM 370/168 and the IBM 3033.   
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PREFETCH BRANCH TARGET When a conditional branch is recognized, the target of the branch is 

prefetched, in addition to the instruction following the branch. This target is then saved until the branch 

instruction is executed. If the branch is taken, the target has already been prefetched.   

Example- The IBM 360/91 uses this approach.   

LOOP BUFFER A loop buffer is a small, very-high-speed memory maintained by the instruction fetch 

stage of the pipeline and containing the n most recently fetched instructions, in sequence. If a branch is to 

be taken, the hardware first checks whether the branch target is within the buffer. If so, the next instruction 

is fetched from the buffer.   

The loop buffer has three benefits:   

1. With the use of prefetching, the loop buffer will contain some instruction sequentially ahead of the 

current instruction fetch address.   

2. If a branch occurs to a target just a few locations ahead of the address of the branch instruction,the 

target will already be in the buffer.  

3. This strategy is particularly well suited to dealing with loops, or iterations; hence the name loop 

buffer. If the loop buffer is large enough to contain all the instructions in a loop, then those instructions 

need to be fetched from memory only once, for the first iteration. For subsequent iterations, all the 

needed instructions are already in the buffer.  

Figure 3.8 gives an example of a loop buffer  

  
3.8 Loop Buffer  

BRANCH PREDICTION Various techniques can be used to predict whether a branch will be taken. 

Among the more common are the following:   

• Predict never taken   

• Predict always taken   

• Predict by opcode   

• Taken/not taken switch   

• Branch history table   

The first three approaches are static: they do not depend on the execution history up to the time of 

the conditional branch instruction. The latter two approaches are dynamic: They depend on the execution 

history.   

The first two approaches are the simplest. These either always assume that the branch will not be 

taken or continue to fetch instructions in sequence, or they always assume that the branch will be taken and 
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always fetch from the branch target. The predict-never-taken approach is the most popular of all the branch 

prediction methods.  

DELAYED BRANCH It is possible to improve pipeline performance by automatically rearranging 

instructions within a program, so that branch instructions occur later than actually desired.  
  

❖ 8086 Processor Family  
The x86 organization has evolved dramatically over the years.   

Register Organization   

The register organization includes the following types of registers (Table 3.1):   

  
Table 3.1: X86 Processor Registers  

  

• General: There are eight 32-bit general-purpose registers. These may be used for all types of x86 

instructions; and some of these registers also serve special purposes. For example, string instructions use 

the contents of the ECX, ESI, and EDI registers as operands without having to reference these registers 

explicitly in the instruction.   

• Segment: The six 16-bit segment registers contain segment selectors, which index into segment 

tables, as discussed in Chapter 8. The code segment (CS) register references the segment containing the 

instruction being executed. The stack segment (SS) register references the segment containing a uservisible 

stack.The remaining segment registers (DS,ES,FS,GS) enable the user to reference up to four separate data 

segments at a time.   

• Flags: The 32-bit EFLAGS register contains condition codes and various mode bits. In 64-bit mode, 

this register is extended to 64 bits and referred to as RFLAGS. In the current architecture definition, the 

upper 32 bits of RFLAGS are unused.   
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• Instruction pointer: Contains the address of the current instruction. There are also registers 

specifically devoted to the floating-point unit:   

• Numeric: Each register holds an extended-precision 80-bit floating-point number. There are eight 

registers that function as a stack, with push and pop operations available in the instruction set.   

• Control: The 16-bit control register contains bits that control the operation of the floating-point 

unit, including the type of rounding control; single, double, or extended precision; and bits to enable or 

disable various exception conditions.   

• Status: The 16-bit status register contains bits that reflect the current state of the floating-point unit, 

including a 3-bit pointer to the top of the stack; condition codes reporting the outcome of the last operation; 

and exception flags.   

• Tag word: This 16-bit register contains a 2-bit tag for each floating-point numeric register, which 

indicates the nature of the contents of the corresponding register. The four possible values are valid, zero, 

special (NaN, infinity, denormalized),and empty.  

EFLAGS REGISTER The EFLAGS register (Figure 3.9) indicates the condition of the processor and helps 

to control its operation. It includes the six condition codes (carry, parity, auxiliary, zero, sign, overflow), 

which report the results of an integer operation. In addition, there are bits in the register that may be referred 

to as control bits:   

  
Figure 3.9 PentiumII EFLAGS Register  

• Trap flag (TF): When set, causes an interrupt after the execution of each instruction. This is used 

for debugging.   

• Interrupt enable flag (IF): When set, the processor will recognize external interrupts.   

• Direction flag (DF): Determines whether string processing instructions increment or decrement the 

16-bit half-registers SI and DI (for 16-bit operations) or the 32-bit registers ESI and EDI (for 32-bit 

operations).   

• I/O privilege flag (IOPL): When set, causes the processor to generate an exception on all accesses 

to I/O devices during protected-mode operation.   

• Resume flag (RF): Allows the programmer to disable debug exceptions so that the instruction can 

be restarted after a debug exception without immediately causing another debug exception.   

• Alignment check (AC): Activates if a word or doubleword is addressed on a nonword or 

nondoubleword boundary.   

• Identification flag (ID): If this bit can be set and cleared, then this processor supports the 

processorID instruction. This instruction provides information about the vendor, family, and model.  

• Nested Task (NT) flag indicates that the current task is nested within another task in protectedmode 

operation.   

• Virtual Mode (VM) bit allows the programmer to enable or disable virtual 8086 mode, which 

determines whether the processor runs as an 8086 machine.   
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• Virtual Interrupt Flag (VIF) and Virtual Interrupt Pending (VIP) flag are used in a multitasking 

environment  

CONTROL REGISTERS The x86 employs four control registers (register CR1 is unused) to control 

various aspects of processor operation . All of the registers except CR0 are either 32 bits or 64 bits long..The 

flags are are as follows:   

• Protection Enable (PE): Enable/disable protected mode of operation.   

• Monitor Coprocessor (MP): Only of interest when running programs from earlier machines on the 

x86; it relates to the presence of an arithmetic coprocessor.   
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• Emulation (EM): Set when the processor does not have a floating-point unit, and causes an 

interrupt when an attempt is made to execute floating-point instructions.   

• Task Switched (TS): Indicates that the processor has switched tasks.   

• Extension Type (ET): Not used on the Pentium and later machines; used to indicate support of 

math coprocessor instructions on earlier machines.   

• Numeric Error (NE): Enables the standard mechanism for reporting floating-point errors on 

external bus lines.   

• Write Protect (WP): When this bit is clear, read-only user-level pages can be written by a 

supervisor process. This feature is useful for supporting process creation in some operating systems.   

• Alignment Mask (AM): Enables/disables alignment checking.   

• Not Write Through (NW): Selects mode of operation of the data cache. When this bit is set, the 

data cache is inhibited from cache write-through operations.   

• Cache Disable (CD): Enables/disables the internal cache fill mechanism.   

• Paging (PG): Enables/disables paging.   

1. When paging is enabled, the CR2 and CR3 registers are valid.   

2. The CR2 register holds the 32-bit linear address of the last page accessed before a page fault 

interrupt.  

3. The leftmost 20 bits of CR3 hold the 20 most significant bits of the base address of the page 

directory; the remainder of the address contains zeros. The page-level cache disable (PCD) enables 

or disables the external cache, and the page-level writes transparent (PWT) bit controls write 

through in the external cache.   

4. Nine additional control bits are defined in CR4:   

• Virtual-8086 Mode Extension (VME): Enables virtual interrupt flag in virtual-8086 mode.   

• Protected-mode Virtual Interrupts (PVI): Enables virtual interrupt flag in protected mode.   

• Time Stamp Disable (TSD): Disables the read from time stamp counter (RDTSC) instruction, 

which is used for debugging purposes.   

• Debugging Extensions (DE): Enables I/O breakpoints; this allows the processor to interrupt on I/O 

reads and writes.   

• Page Size Extensions (PSE): Enables large page sizes (2 or 4-MByte pages) when set; restricts 

pages to 4 KBytes when clear.   

• Physical Address Extension (PAE): Enables address lines A35 through A32 whenever a special 

new addressing mode, controlled by the PSE, is enabled.   

• Machine Check Enable (MCE): Enables the machine check interrupt, which occurs when a data 

parity error occurs during a read bus cycle or when a bus cycle is not successfully complete   

• Page Global Enable (PGE): Enables the use of global pages. When PGE = 1 and a task switch is 

performed, all of the TLB entries are flushed with the exception of those marked global.  

• Performance Counter Enable(PCE): Enables the Execution of the RDPMC (read performance 

counter) instruction at any privilege level.  

MMX REGISTERS The MMX instructions make use of 3-bit register address fields, so that eight MMX 

registers are supported. (Figure 3.11). The existing floating-point registers are used to store MMX values. 

Specifically, the low-order 64 bits (mantissa) of each floating-point register are used to form the eight MMX 

registers. Some key characteristics of the MMX use of these registers are as follows:   

• Recall that the floating-point registers are treated as a stack for floating-point operations. For MMX 

operations, these same registers are accessed directly.   

• The first time that an MMX instruction is executed after any floating-point operations, the FP tag 

word is marked valid. This reflects the change from stack operation to direct register addressing.  
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• The EMMS (Empty MMX State) instruction sets bits of the FP tag word to indicate that all registers 

are empty. It is important that the programmer insert this instruction at the end of an MMX code block so 

that subsequent floating-point operations function properly.   

• When a value is written to an MMX register, bits [79:64] of the corresponding FP register (sign and 

exponent bits) are set to all ones. This sets the value in the FP register to NaN (not a number) or infinity 

when viewed as a floating-point value. This ensures that an MMX data value will not look like a valid 

floating-point value.   
  

  
3.11 Mapping of MMX Registers to Floating Point Registers  

  

Interrupt Processing   

Interrupt processing within a processor is a facility provided to support the operating system. It allows an 

application program to be suspended, in order that a variety of interrupt conditions can be serviced and later 

resumed.   

INTERRUPTS AND EXCEPTIONS An interrupt is generated by a signal from hardware, and it may occur 

at random times during the execution of a program. An exception is generated from software, and it is 

provoked by the execution of an instruction. There are two sources of interrupts and two sources of 

exceptions:   

1. Interrupts   

• Maskable interrupts: Received on the processor’s INTR pin. The processor does not recognize a 

maskable interrupt unless the interrupt enable flag (IF) is set.   

• Nonmaskable interrupts: Received on the processor’s NMI pin. Recognition of such interrupts 

cannot be prevented.   

2. Exceptions   

• Processor-detected exceptions: Results when the processor encounters an error while attempting 

to execute an instruction.   

• Programmed exceptions: These are instructions that generate an exception (e.g., INTO, INT3, 

INT, and BOUND).   
  



                                                                                                                                                          UNIT-III  

  

GEU Page 13  

  

INTERRUPT VECTOR TABLE Interrupt processing on the x86 uses the interrupt vector table. Every type 

of interrupt is assigned a number, and this number is used to index into the interrupt vector table. This table 

contains 256 32-bit interrupt vectors, which is the address (segment and offset) of the interrupt service 

routine for that interrupt number.   

INTERRUPT HANDLING When an interrupt occurs and is recognized by the processor, a sequence of 

events takes place:   

1 If the transfer involves a change of privilege level, then the current stack segment register 

and the current extended stack pointer (ESP) register are pushed onto the stack.   

2 The current value of the EFLAGS register is pushed onto the stack.   

3 Both the interrupt (IF) and trap (TF) flags are cleared. This disables INTR interrupts and the 

trap or single-step feature.   

4 The current code segment (CS) pointer and the current instruction pointer (IP or EIP) are 

pushed onto the stack.   

5 If the interrupt is accompanied by an error code, then the error code is pushed onto the stack.   

6 The interrupt vector contents are fetched and loaded into the CS and IP or EIP registers. 

Execution continues from the interrupt service routine.   
  

❖ REDUCED INSTRUCTION SET COMPUTERS: Instruction Execution Characteristics, 

Large Register Files and RISC Architecture  

  

❖ Instruction Execution Characteristics  

The semantic gap is the difference between the operations provided in HLLs and those provided in 

computer architecture. . Designers responded with architectures intended to close this gap. Key features 

include large instruction sets, dozens of addressing modes, and various HLL statements implemented in 

hardware. Such complex instruction sets are intended to   

• Ease the task of the compiler writer.   

• Improve execution efficiency, because complex sequences of operations can be implemented in 

microcode.   

• Provide support for even more complex and sophisticated HLLs.   

The results of these studies inspired some researchers to look for a different approach: namely, to 

make the architecture that supports the HLL simpler, rather than more complex To understand the line of 

reasoning of the RISC advocates, we begin with a brief review of instruction execution characteristics.   

The aspects of computation of interest are as follows:   

• Operations performed: These determine the functions to be performed by the processor and its 

interaction with memory.   

• Operands used: The types of operands and the frequency of their use determine the memory 

organization for storing them and the addressing modes for accessing them.   

• Execution sequencing: This determines the control and pipeline organization.   
  

Implications   

A number of groups have looked at results such as those just reported and have concluded that the attempt 

to make the instruction set architecture close to HLLs is not the most effective design strategy. Rather, the 

HLLs can best be supported by optimizing performance of the most time-consuming features of typical 

HLL programs.   

• Generalizing from the work of a number of researchers, three elements emerge that, by and large, 

characterize RISC architectures.  
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• First, use a large number of registers or use a compiler to optimize register usage. This is intended 

to optimize operand referencing. The studies just discussed show that there are several references per HLL 

instruction and that there is a high proportion of move (assignment) statements. This suggests that 

performance can be improved by reducing memory references at the expense of more register references.   

• Second, careful attention needs to be paid to the design of instruction pipelines. Because of the high 

proportion of conditional branch and procedure call instructions, a straightforward instruction pipeline will 

be inefficient. This manifests itself as a high proportion of instructions that are prefetched but never 

executed.   

• Finally, a simplified (reduced) instruction set is indicated. This point is not as obvious as the others, 

but should become clearer in the ensuing discussion.  
  

❖ Use of Large Register Files:  

The reason that register storage is indicated is that it is the fastest available storage device, faster than 

both main memory and cache. The register file will allow the most frequently accessed operands to be kept 

in registers and to minimize register-memory operations.   

Two basic approaches are possible, one based on software and the other on hardware.   

The software approach is to rely on the compiler to maximize register usage. The compiler will attempt 

to allocate registers to those variables that will be used the most in a given time period. This approach 

requires the use of sophisticated program-analysis algorithms.  

The hardware approach is simply to use more registers so that more variables can be held in registers 

for longer periods of time. Here we will discuss the hardware approach.   
  

Register Windows   

On the face of it, the use of a large set of registers should decrease the need to access memory.   

Because most operand references are to local scalars, the obvious approach is to store these in registers, 

and few registers reserved for global variables. The problem is that the definition of local changes with each 

procedure call and return, operations that occur frequently  

The solution is based on two other results reported. First, a typical procedure employs only a few 

passed parameters and local variables. Second, the depth of procedure activation fluctuates within a 

relatively narrow range.   

The concept is illustrated in Figure 3.12. At any time, only one window of registers is visible and is 

addressable as if it were the only set of registers (e.g., addresses 0 through N -1).The window is divided 

into three fixed-size areas. Parameter registers hold parameters passed down from the procedure that 

called the current procedure and hold results to be passed back up. Local registers are used for local 

variables, as assigned by the compiler. Temporary registers are used to exchange parameters and results 

with the next lower level (procedure called by current procedure).The temporary registers at one level are 

physically the same as the parameter registers at the next lower level. This overlap permits parameters to 

be passed without the actual movement of data. Keep in mind that, except for the overlap, the registers at 

two different levels are physically distinct. That is, the parameter and local registers at level J are disjoint 

from the local and temporary registers at level J + 1.   
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3.12 Overlapping Register windows  

  

  

  
3.13 Circular Buffer Organization of Overlapping Windows  

The circular organization is shown in Figure 3.13, which depicts a circular buffer of six windows. The 

buffer is filled to a depth of 4 (A called B; B called C; C called D) with procedure D active. The 

currentwindow pointer (CWP) points to the window of the currently active procedure. Register references 

by a machine instruction are offset by this pointer to determine the actual physical register.   

The saved-window pointer (SWP) identifies the window most recently saved in memory. If procedure 

D now calls procedure E, arguments for E are placed in D’s temporary registers (the overlap between w3 

and w4) and the CWP is advanced by one window. If procedure E then makes a call to procedure F, the call 

cannot be made with the current status of the buffer. This is because F’s window overlaps A’s window. If 

F begins to load its temporary registers, preparatory to a call, it will overwrite the parameter registers of A 

(A. in).   

Thus, when CWP is incremented (modulo 6) so that it becomes equal to SWP, an interrupt occurs, and 

A’s window is saved. Only the first two portions (A. in and A.loc) need be saved. Then, the SWP is 

incremented and the call to F proceeds. A similar interrupt can occur on returns. For example, subsequent 

to the activation of F, when B returns to A, CWP is decremented and becomes equal to SWP. This causes 

an interrupt that results in the restoration of A’s window.  Global Variables   

The window scheme does not address the need to store global variables, those accessed by more than one 

procedure. Two options suggest themselves.  

 First, variables declared as global in an HLL can be assigned memory locations by the compiler, and  
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all machine instructions that reference these variables will use memory-reference operands.   

An alternative is to incorporate a set of global registers in the processor. These registers would be fixed 

in number and available to all procedures..There is an increased hardware burden to accommodate the split 

in register addressing. In addition, the compiler must decide which global variables should be assigned to 

registers.   

Large Register File versus Cache   

The register file, organized into windows, acts as a small, fast buffer for holding a subset of all variables 

that are likely to be used the most heavily. From this point of view, the register file acts much like a cache 

memory, although a much faster memory. The question therefore arises as to whether it would be simpler 

and better to use a cache and a small traditional register file.   

Table 3.2 compares characteristics of the two approaches.  

  
Table 3.2 Characteristics of large register files and cache organization  

  

• The window-based register file holds all the local scalar variables (except in the rare case of window 

overflow) of the most recent N -1 procedure activations. The cache holds a selection of recently used scalar 

variables. The register file should save time, because all local scalar variables are retained.  • The cache 

may make more efficient use of space, because it is reacting to the situation dynamically.   

A register file may make inefficient use of space, because not all procedures will need the full window 

space allotted to them.  

• The cache suffers from another sort of inefficiency: Data are read into the cache in blocks. 

Whereas the register file contains only those variables in use, the cache reads in a block of data, 

some or much of which will not be used.   

• The cache is capable of handling global as well as local variables. There are usually many 

global scalars, but only a few of them are heavily used. A cache will dynamically discover these 

variables and hold them. If the window-based register file is supplemented with global registers, it 

too can hold some global scalars. However, it is difficult for a compiler to determine which globals 

will be heavily used.   

• With the register file, the movement of data between registers and memory is determined by 

the procedure nesting depth.. Most cache memories are set associative with a small set size.  

• Figure 3.14 illustrates the difference. To reference a local scalar in a window-based register 

file, a “virtual”register number and a window number are used. These can pass through a relatively 

simple decoder to select one of the physical registers. To reference a memory location in cache, a 

full-width memory address must be generated. The complexity of this operation depends on the 

addressing mode. In a set associative cache, a portion of the address is used to read a number of 

words and tags equal to the set size. Another portion of the address is compared with the tags, and 

one of the words that were read is selected. It should be clear that even if the cache is as fast as the 

register file, the access time will be considerably longer. Thus, from the point of view of 
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performance, the window-based register file is superior for local scalars. Further performance 

improvement could be achieved by the addition of a cache for instructions only.   

  
3.14 Referencing a scalar  

  

❖ Reduced Instruction Set Computer:  

Why CISC   

CISC has richer instruction sets, which include a larger number of instructions and more complex 

instructions. Two principal reasons have motivated this trend: a desire to simplify compilers and a desire to 

improve performance.   

The first of the reasons cited, compiler simplification, seems obvious. The task of the compiler writer 

is to generate a sequence of machine instructions for each HLL statement. If there are machine instructions 

that resemble HLL statements, this task is simplified.   

This reasoning has been disputed by the RISC researchers. They have found that complex machine 

instructions are often hard to exploit because the compiler must find those cases that exactly fit the construct. 

The task of optimizing the generated code to minimize code size, reduce instruction execution count, and 

enhance pipelining is much more difficult with a complex instruction set.   

The other major reason cited is the expectation that a CISC will yield smaller, faster programs. Let us 

examine both aspects of this assertion: that program will be smaller and that they will execute faster.  There 

are two advantages to smaller programs. First, because the program takes up less memory, there is a savings 

in that resource. Second, in a paging environment, smaller programs occupy fewer pages, reducing page 

faults.   

The problem with this line of reasoning is that it is far from certain that a CISC program will be smaller 

than a corresponding RISC program. Thus it is far from clear that a trend to increasingly complex instruction 

sets is appropriate. This has led a number of groups to pursue the opposite path.  Characteristics of 

Reduced Instruction Set Architectures   
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Although a variety of different approaches to reduced instruction set architecture have been taken, certain 

characteristics are common to all of them:   

• One instruction per cycle   

• Register-to-register operations   

• Simple addressing modes   

• Simple instruction formats   
  

One machine instruction per machine cycle.A machine cycle is defined to be the time it takes to 

fetch two operands from registers, perform an ALU operation, and store the result in a register. Thus, RISC 

machine instructions should be no more complicated than, and execute about as fast as, microinstructions 

on CISC machines.With simple, one-cycle instructions, there is little or no need for microcode; the machine 

instructions can be hardwired. Such instructions should execute faster than comparable machine instructions 

on other machines, because it is not necessary to access a microprogram control store during instruction 

execution.   

A second characteristic is that most operations should be register to register, with only simple LOAD 

and STORE operations accessing memory.This design feature simplifies the instruction set and therefore 

the control unit. For example, a RISC instruction set may include only one or two ADD instructions (e.g., 

integer add, add with carry); the VAX has 25 different ADD instructions.   

This emphasis on register-to-register operations is notable for RISC designs. Contemporary CISC 

machines provide such instructions but also include memoryto-memory and mixed register/memory 

operations. Figure 13.5a illustrates the approach taken, Figure 13.5b may be a fairer comparison.   
  

  
3.15Two Comparisions of Register-to-Register and Register-to-Memory References  

A third characteristic is the use of simple addressing modes. Almost all RISC instructions use simple 

register addressing. Several additional modes, such as displacement and PC-relative, may be included.   

A final common characteristic is the use of simple instruction formats. Generally, only one or a few 

formats are used. Instruction length is fixed and aligned on word boundaries  

These characteristics can be assessed to determine the potential performance benefits of the RISC 

approach.       

First, more effective optimizing compilers can be developed   
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A second point, already noted, is that most instructions generated by a compiler are relatively simple 

anyway. It would seem reasonable that a control unit built specifically for those instructions and using little 

or no microcode could execute them faster than a comparable CISC.   

A third point relates to the use of instruction pipelining. RISC researchers feel that the instruction 

pipelining technique can be applied much more effectively with a reduced instruction set.   

A final, and somewhat less significant, point is that RISC processors are more responsive to interrupts 

because interrupts are checked between rather elementary operations.   

CISC versus RISC Characteristics   

After the initial enthusiasm for RISC machines, there has been a growing realization that (1) RISC designs 

may benefit from the inclusion of some CISC features and that (2) CISC designs may benefit from the 

inclusion of some RISC features. The result is that the more recent RISC designs, notably the PowerPC, 

are no longer “pure” RISC and the more recent CISC designs, notably the Pentium II and later Pentium 

models, do incorporate some RISC characteristics.   

Table 3.3 lists a number of processors and compares them across a number of characteristics. For 

purposes of this comparison, the following are considered typical of a classic RISC:   

1. A single instruction size.   

2. That size is typically 4 bytes.   

3. A small number of data addressing modes,typically less than five.This parameter is difficult to pin down. 

In the table, register and literal modes are not counted and different formats with different offset sizes 

are counted separately.   

4. No indirect addressing that requires you to make one memory access to get the address of another operand 

in memory.   

5. No operations that combine load/store with arithmetic (e.g., add from memory, add to memory).   

6. No more than one memory-addressed operand per instruction.   

7. Does not support arbitrary alignment of data for load/store operations.   

8. Maximum number of uses of the memory management unit (MMU) for a data address in an instruction.   

9. Number of bits for integer register specifier equal to five or more. This means that at least 32 integer 

registers can be explicitly referenced at a time.   

10. Number of bits for floating-point register specifier equal to four or more.This means that at least 16 

floating-point registers can be explicitly referenced at a time.   

Items 1 through 3 are an indication of instruction decode complexity. Items 4 through 8 suggest the 

ease or difficulty of pipelining, especially in the presence of virtual memory requirements. Items 9 and 10 

are related to the ability to take good advantage of compilers.   

In the table, the first eight processors are clearly RISC architectures, the next five are clearly CISC, 

and the last two are processors often thought of as RISC that in fact have many CISC characteristics.  
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Table 3.3: Characteristics if some Processors  
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UNIT-4  

PROCESSOR CONTROL UNIT  

❖ MICRO-OPERATIONS  

The control unit controls the operation of the processor.  

The operation of a computer, in executing a program, consists of a sequence of instruction cycles, with one 

machine instruction per cycle. Each instruction cycle is made up of a number of smaller units. One subdivision that 

we found convenient is fetch, indirect, execute, and interrupt, with only fetch and execute cycles always occurring.   

We began to see that a further decomposition is possible. Each of the smaller cycles involves a series of steps, 

each of which involves the processor registers. We will refer to these steps as micro-operations. The prefix micro 

refers to the fact that each step is very simple and accomplishes very little. Figure 4.1 depicts the relationship.  To 

summarize, the execution of a program consists of the sequential execution of instructions. Each instruction is 

executed during an instruction cycle made up of shorter subcycles (e.g., fetch, indirect, execute, interrupt).The 

execution of each sub cycle involves one or more shorter operations, that is, micro-operations.   

 
Figure 4,1 Constituent elements of a Program execution  

The Fetch Cycle   

We begin by looking at the fetch cycle, which occurs at the beginning of each instruction cycle and causes 

an instruction to be fetched from memory. Four registers are involved:   

• Memory address register (MAR): Is connected to the address lines of the system bus. It specifies the 

address in memory for a read or write operation.   

• Memory buffer register (MBR): Is connected to the data lines of the system bus. It contains the value to be 

stored in memory or the last value read from memory.   

• Program counter (PC): Holds the address of the next instruction to be fetched.   

• Instruction register (IR): Holds the last instruction fetched.   
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Let us look at the sequence of events for the fetch cycle from the point of view of its effect on the processor 

registers. An example appears in Figure 4.2.  

  

4.2 Sequence of events, Fetch cycle  

  At the beginning of the fetch cycle, the address of the next instruction to be executed is in the program counter (PC); 

in this case, the address is 1100100.  

• The first step is to move that address to the memory address register (MAR) because this is the only register 

connected to the address lines of the system bus.  
• The second step is to bring in the instruction. The desired address (in the MAR) is placed on the address bus, 

the control unit issues a READ command on the control bus, and the result appears on the data bus and is 

copied into the memory buffer register (MBR). We also need to increment the PC by the instruction length to 

get ready for the next instruction. Because these two actions (read word from memory, increment PC) do not 

interfere with each other, we can do them simultaneously to save time.   

• The third step is to move the contents of the MBR to the instruction register (IR). This frees up the MBR for 

use during a possible indirect cycle.   
Thus, the simple fetch cycle actually consists of three steps and four micro-operations. Symbolically, we can 

write this sequence of events as follows:   

t1: MAR ← (PC)  t2: 

MBR ← Memory   

PC ← (PC) + I  t3: 

IR ← (MBR)   

where I is the instruction length. Each micro-operation can be performed within the time of a single time unit.The 

notation (t1, t2, t3)represents successive time units.In words,we have   

• First time unit: Move contents of PC to MAR.   

• Second time unit: Move contents of memory location specified by MAR to MBR. Increment by I the 

contents of the PC.   

• Third time unit: Move contents of MBR to IR.   

  

Note that the second and third micro-operations both take place during the second time unit. The third microoperation 

could have been grouped with the fourth without affecting the fetch operation:   

t1: MAR ← (PC)   
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t2: MBR ← Memory  

t3: PC ← (PC) + I  

IR ← (MBR)   

The groupings of micro-operations must follow three simple rules:   

1 The proper sequence of events must be followed. Thus (MAR ; (PC)) must precede (MBR ; Memory) because 

the memory read operation makes use of the address in the MAR.   

2 Conflicts must be avoided. One should not attempt to read to and write from the same register in one time 

unit, because the results would be unpredictable. For example, the micro-operations (MBR ; Memory) and (IR ; 

MBR) should not occur during the same time unit.  

3 A final point worth noting is that one of the micro-operations involves an addition. To avoid duplication of 

circuitry, this addition could be performed by the ALU.  

The Indirect Cycle   

Once an instruction is fetched, the next step is to fetch source operands. If the instruction specifies an indirect 

address, then an indirect cycle must precede the execute cycle and includes the following micro-operations:   

t1: MAR ← (IR(Address))  t2: 

MBR ← Memory  t3: IR(Address) 

← (MBR(Address))   

The address field of the instruction is transferred to the MAR.This is then used to fetch the address of the operand. 

Finally, the address field of the IR is updated from the MBR, so that it now contains a direct rather than an indirect 

address. The IR is now in the same state as if indirect addressing had not been used, and it is ready for the execute 

cycle.   

  

The Interrupt Cycle   

At the completion of the execute cycle, a test is made to determine whether any enabled interrupts have 

occurred. If so, the interrupt cycle occurs. The nature of this cycle varies greatly from one machine to another. We 

present a very simple sequence of events,   

t1: MBR ← (PC)   

t2: MAR ← Save_Address   

PC ← Routine_Address  t3: 

Memory ← (MBR)   

In the first step, the contents of the PC are transferred to the MBR, so that they can be saved for return from the 

interrupt. Then the MAR is loaded with the address at which the contents of the PC are to be saved, and the PC is 

loaded with the address of the start of the interrupt-processing routine. These two actions may each be a single micro-

operation. to the MAR and PC, respectively. The final step is to store the MBR, which contains the old value of the 

PC, into memory. The processor is now ready to begin the next instruction cycle.   

  

The Execute Cycle   

The fetch, indirect, and interrupt cycles are simple and predictable. Each involves a small, fixed sequence of 

microoperations and, in each case  the same micro-operations are repeated each time around.   
This is not true of the execute cycle. Because of the variety opcodes, there are a number of different sequences 

of micro-operations that can occur. Let us consider several hypothetical examples.   
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First, consider an add instruction: ADD R1, X  which adds the contents of the location X to register R1. The 

following sequence of micro-operations might occur:   

t1: MAR ← (IR(address))  

t2: MBR ← Memory  t3: 

R1 ← (R1) + (MBR)   

We begin with the IR containing the ADD instruction. In the first step, the address portion of the IR is loaded 

into the MAR. Then the referenced memory location is read. Finally, the contents of R1 and MBR are added by the 

ALU.   
Let us look at two more complex examples.  

 A common instruction is increment and skip if zero:   

ISZ X   

The content of location X is incremented by 1. If the result is 0, the next instruction is skipped. A possible sequence 

of micro-operations is   

t1: MAR ← (IR(address))  

t2: MBR ← Memory  t3: 

MBR ← (MBR) + 1  t4: 

Memory ← (MBR)   

If ((MBR) = 0) then (PC ← (PC) + I)  

The new feature introduced here is the conditional action.The PC is incremented if (MBR) = 0. This test and action 

can be implemented as one micro-operation.   

Finally,consider a subroutine call instruction.As an example,consider a branchand-save-address instruction:   

BSA X   

The address of the instruction that follows the BSA instruction is saved in location X, and execution continues 

at location X + I. The saved address will later be used for return.The following micro-operations suffice:   

t1: MAR ← (IR(address))  

 MBR ← (PC)  t2: 

PC ← (IR(address))   

Memory ← (MBR)  t3: 

PC ← (PC) + I   

The address in the PC at the start of the instruction is the address of the next instruction in sequence. This is 

saved at the address designated in the IR. The latter address is also incremented to provide the address of the 

instruction for the next instruction cycle.   

  

The Instruction Cycle   

We have seen that each phase of the instruction cycle can be decomposed into a sequence of elementary 

micro-operations. There is one sequence each for the fetch, indirect, and interrupt cycles, and, for the execute cycle, 

there is one sequence of micro-operations for each opcode.   
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We assume a new 2-bit register called the instruction cycle code (ICC). The ICC designates the state of the processor 

in terms of which portion of the cycle it is in:   

00: Fetch   

01: Indirect   

10: Execute   

11: Interrupt   

At the end of each of the four cycles, the ICC is set appropriately. The indirect cycle is always followed by 

the execute cycle. The interrupt cycle is always followed by the fetch cycle. For both the fetch and execute cycles, 

the next cycle depends on the state of the system.   
Thus, the flowchart of Figure 4.3 defines the complete sequence of micro-operations, depending only on the 

instruction sequence and the interrupt pattern.  

  

Figure 4.3 Flowchart for Instruction Cycle  

❖ CONTROL OF THE PROCESSOR  

By reducing the operation of the processor to its most fundamental level, we are able to define exactly what it is that 

the control unit must cause to happen. Thus, we can define the functional requirements for the control unit:  
those functions that the control unit must perform   

With the information at hand, the following three-step process leads to a characterization of the control unit:   

1 Define the basic elements of the processor.   

2 Describe the micro-operations that the processor performs.   

3 Determine the functions that the control unit must perform to cause the micro-operations to be 

performed.  First, the basic functional elements of the processor are the following:   

1. ALU   2. Registers   3. Internal data paths   4. External data paths  5.Control Unit  

The ALU is the functional essence of the computer. Registers are used to store data internal to the processor.  

Some registers contain status information needed to manage instruction sequencing (e.g., a program status word). 

Others contain data that go to or come from the ALU, memory, and I/O modules. Internal data paths are used to move 
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data between registers and between register and ALU. External data paths link registers to memory and I/O modules, 

often by means of a system bus. The control unit causes operations to happen within the processor.   

The execution of a program consists of operations involving these processor elements. All micro-operations fall 

into one of the following categories:   

• Transfer data from one register to another.   

• Transfer data from a register to an external interface (e.g., system bus).   

• Transfer data from an external interface to a register.   

• Perform an arithmetic or logic operation, using registers for input and output.   

    

The control unit performs two basic tasks:   

• Sequencing: The control unit causes the processor to step through a series of micro-operations in the 

proper sequence, based on the program being executed.   

• Execution: The control unit causes each micro-operation to be performed.    

  

The key to how the control unit operates is the use of control signals.   

Control Signals   

For the control unit to perform its function, it must have inputs that allow it to determine the state of the system and 

outputs that allow it to control the behaviour of the system. These are the external specifications of the control unit. 

Internally, the control unit must have the logic required to perform its sequencing and execution functions.   

  

Figure 4.4 Block Diagram of Control Unit  

Figure 4.4 is a general model of the control unit, showing all of its inputs and outputs. The inputs are   

• Clock: This is how the control unit “keeps time.” The control unit causes one micro-operation (or a set of 

simultaneous micro-operations) to be performed for each clock pulse. This is sometimes referred to as the 

processor cycle time, or the clock cycle time.   

• Instruction register: The opcode and addressing mode of the current instruction are used to determine which 

micro-operations to perform during the execute cycle.   

• Flags: These are needed by the control unit to determine the status of the processor and the outcome of previous 

ALU operations. For example, for the increment-and-skip-if-zero (ISZ) instruction, the control unit will increment 

the PC if the zero flag is set.   

• Control signals from control bus: The control bus portion of the system bus provides signals to the control unit.   

The outputs are as follows:   
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• Control signals within the processor: These are two types: those that cause data to be moved from one register 

to another, and those that activate specific ALU functions.   

• Control signals to control bus: These are also of two types: control signals to memory, and control signals to 

the I/O modules.   
  

Three types of control signals are used: those that activate an ALU function, those that activate a data path, 

and those that are signals on the external system bus or other external interface.   

Let us consider again the fetch cycle to see how the control unit maintains control. The control unit keeps 

track of where it is in the instruction cycle. At a given point,it knows that the fetch cycle is to be performed next.The 

first step is to transfer the contents of the PC to the MAR. The control unit does this by activating the control signal 

that opens the gates between the bits of the PC and the bits of the MAR. The next step is to read a word from memory 

into the MBR and increment the PC. The control unit does this by sending the following control signals 

simultaneously:  

• A control signal that opens gates, allowing the contents of the MAR onto the address bus   

• A memory read control signal on the control bus   

• A control signal that opens the gates, allowing the contents of the data bus to be stored in the MBR   

• Control signals to logic that add 1 to the contents of the PC and store the result back to the PC   

  

Following this, the control unit sends a control signal that opens gates between the MBR and the IR.   

This completes the fetch cycle except for one thing: The control unit must decide whether to perform an indirect 

cycle or an execute cycle next. To decide this, it examines the IR to see if an indirect memory reference is made.   
The indirect and interrupt cycles work similarly. For the execute cycle, the control unit begins by examining the 

opcode and, on the basis of that, decides which sequence of micro-operations to perform for the execute cycle.   

A Control Signals Example   

To illustrate the functioning of the control unit, let us examine Figure 4.5.This is a simple processor with a 

single accumulator (AC). The data paths between elements are indicated. The control paths for signals emanating 

from the control unit are not shown, but the terminations of control signals are labeled Ci and indicated by a circle.   

  
4.5 Data paths and control signals  

The control unit receives inputs from the clock, the instruction register, and flags. With each clock cycle, the 

control unit reads all of its inputs and emits a set of control signals. Control signals go to three separate destinations:   

• Data paths: The control unit controls the internal flow of data. For example, on instruction fetch, the contents 

of the memory buffer register are transferred to the instruction register. For each path to be controlled, there is a 
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switch (indicated by a circle in the figure). A control signal from the control unit temporarily opens the gate to let 

data pass.   

• ALU: The control unit controls the operation of the ALU by a set of control signals. These signals activate 

various logic circuits and gates within the ALU.   

• System bus: The control unit sends control signals out onto the control lines of the system bus (e.g., memory 

READ).   
Table 4.1 indicates the control signals that are needed for some of the micro-operation sequences :  

  
Table 4.1 Micro-Operations and Control Signals  

  

❖ 8085 ARCHITECTURE  
The Intel 8085 organization is shown in Figure 4.6. Several key components that may not be selfexplanatory 

are:   

• Incrementer/decrementer address latch: Logic that can add 1 to or subtract 1 from the contents of 

the stack pointer or program counter. This saves time by avoiding the use of the ALU for this purpose.   

• Interrupt control: This module handles multiple levels of interrupt signals.   

• Serial I/O control: This module interfaces to devices that communicate 1 bit at a time.   
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Figure 4.6 Intel 8085 CPU Block Diagram  

  

Table 4.2 describes the external signals into and out of the 8085. These are linked to the external system bus. These 

signals are the interface between the 8085 processor and the rest of the system.  
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Table 4.2 Intel 8085 External Signals  
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The control unit is identified as having two components labeled (1) instruction decoder and machine cycle 

encoding and (2) timing and control.  
 The essence of the control unit is the timing and control module.This module includes a clock and accepts as 

inputs the current instruction and some external control signals. Its output consists of control signals to the other 

components of the processor plus control signals to the external system bus.   
The timing of processor operations is synchronized by the clock and controlled by the control unit with control 

signals. Each instruction cycle is divided into from one to five machine cycles; each machine cycle is in turn divided 

into from three to five states. Each state lasts one clock cycle. During a state, the processor performs one or a set of 

simultaneous micro-operations as determined by the control signals.   
Figure 4.7 gives an example of 8085 timing, showing the value of external control signals. The diagram shows 

the instruction cycle for an OUT instruction. Three machine cycles (M1,M2,M3) are needed.  
 During the first, the OUT instruction is fetched.   

The second machine cycle fetches the second half of the instruction, which contains the number of the I/O 

device selected for output.   
During the third cycle, the contents of the AC are written out to the selected device over the data bus.   

The Address Latch Enabled (ALE) pulse signals the start of each machine cycle from the control unit.The ALE 

pulse alerts external circuits.During timing state T1 of machine cycle M1, the control unit sets the IO/M signal to 

indicate that this is a memory operation.Also,the control unit causes the contents of the PC to be placed on the address 

bus (A15 through A8) and the address/data bus (AD7 through AD0). With the falling edge of the ALE pulse, the 

other modules on the bus store the address.   
During timing state T2, the addressed memory module places the contents of the addressed memory location 

on the address/data bus.   
The control unit sets the Read Control (RD) signal to indicate a read, but it waits until T3 to copy the data from 

the bus. This gives the memory module time to put the data on the bus and for the signal levels to stabilize.   The 

final state, T4, is a bus idle state during which the processor decodes the instruction. The remaining machine cycles 

proceed in a similar fashion  

  
Figure 4.7 Timing Diagram for Intel 8085 OUT Instruction   

  

❖ HARDWIRED IMPLEMENTATION  
` A wide variety of techniques have been used for control unit implementation. Most of these fall into one of two 

categories:   

• Hardwired implementation   
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• Microprogrammed implementation   

In a hardwired implementation, the control unit is essentially a state machine circuit. Its input logic signals are 

transformed into a set of output logic signals, which are the control signals.   

Control Unit Inputs   

In Figure 4.4 the key inputs of the control unit are the instruction register, the clock, flags, and control bus 

signals. In the case of the flags and control bus signals, each individual bit typically has some meaning (e.g., 

overflow). The other two inputs, however, are not directly useful to the control unit.   
First consider the instruction register. The control unit makes use of the opcode and will perform different 

actions (issue a different combination of control signals) for different instructions. To simplify the control unit logic, 

there should be a unique logic input for each opcode. This function can be performed by a decoder  
The clock portion of the control unit issues a repetitive sequence of pulses. This is useful for measuring the 

duration of micro-operations. The control unit emits different control signals at different time units within a single 

instruction cycle. So the input to the control unit,with a different control signal being used for T1, T2, and so forth. 

At the end of an instruction cycle, the control unit must feed back to the counter to reinitialize it at T1.   

  
Figure 4.8 Control Unit with Decoded Inputs With 

these two refinements, the control unit can be depicted as in Figure 4.8.   

Control Unit Logic   

To define the hardwired implementation of a control unit, all that remains is to discuss the internal logic of the control 

unit that produces output control signals as a function of its input signals. Essentially, what must be done is, for each 

control signal, to derive a Boolean expression of that signal as a function of the inputs.   
Let us consider again our simple example illustrated in Figure 4.5. We saw in Table 4.1 the micro-operation 

sequences and control signals needed to control three of the four phases of the instruction cycle. Let us consider a 

single control signal, C5. This signal causes data to be read from the external data bus into the MBR. We can see that 

it is used twice in Table 4.1. Let us define two new control signals, P and Q, that have the following interpretation:  

 PQ = 00 Fetch Cycle  

 PQ = 01 Indirect Cycle  

 PQ = 10 Execute Cycle  

 PQ = 11 Interrupt Cycle  

Then the following Boolean expression defines   

That is, the control signal C5 will be asserted during the second time unit of both the fetch and indirect cycles.  This 

expression is not complete. C5 is also needed during the execute cycle. For our simple example, let us assume that 

there are only three instructions that read from memory: LDA, ADD, and AND. Now we can define C5 as  
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This same process could be repeated for every control signal generated by the processor. The result would be a set of 

Boolean equations that define the behavior of the control unit and hence of the processor.   
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UNIT-5  

❖ MICROPROGRAMMED CONTROL UNIT  
The term microprogram was first coined by M. V. Wilkes in the early 1950s. Wilkes proposed an approach 

to control unit design that was organized and systematic that avoided the complexities of a hardwired implementation. 

An alternative for Hardwired Control Unit, which has been used in many CISC processors, is to implement a 

microprogrammed control unit.   
A language is used to deign microprogrammed control unit known as a microprogramming language. Each 

line describes a set of micro-operations occurring at one time and is known as a microinstruction. A sequence of 

instructions is known as a microprogram,or firmware.  
For each micro-operation, control unit has to do is generate a set of control signals. Thus, for any 

microoperation,  control line emanating from the control unit is either on or off. This condition can, be represented 

by a binary digit for each control line. So we could construct a control word in which each bit represents one control 

line. Now add an address field to each control word, indicating the location of the next control word to be executed 

if a certain condition is true.  
The result is known as a horizontal microinstruction, which is shown in Figure 5.1a. The format of the 

microinstruction or control word is as follows. There is one bit for each internal processor control line and one bit for 

each system bus control line. There is a condition field indicating the condition under which there should be a branch, 

and there is a field with the address of the microinstruction to be executed next when a branch is taken. Such a 

microinstruction is interpreted as follows:   

1 To execute this microinstruction, turn on all the control lines indicated by a 1 bit;leave off all control lines 

indicated by a 0 bit.The resulting control signals will cause one or more micro-operations to be performed.   

2 If the condition indicated by the condition bits is false, execute the next microinstruction in sequence.   

3 If the condition indicated by the condition bits is true, the next microinstruction to be executed is indicated 

in the address field.   
  

  
Figure 5.1 Typical MicroInstruction Format  

  

  

In a vertical microinstruction, a code is used for each action to be performed, and the decoder translates this 

code into individual control signals. The advantage of vertical microinstructions is that they are more compact (fewer 

bits) than horizontal microinstructions.  
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Figure 5.2 shows how these control words or microinstructions could be arranged in a control memory. The 

microinstructions in each routine are to be executed sequentially. Each routine ends with a branch or jump instruction 

indicating where to go next. There is a special execute cycle routine whose only purpose is to signify that one of the 

machine instruction routines (AND,ADD,and so on) is to be executed next, depending on the current opcode.  

  

Figure 5.2 Organization of Control Memory  

The Figure 5.2 defines the sequence of micro-operations to be performed during each cycle (fetch, indirect, 

execute, interrupt), and it specifies the sequencing of these cycles.   

Microprogrammed Control Unit   

  
Figure 5.3 Control Unit MicroArchitecture  

Figure 5.3 shows the key elements of a microprogrammed control unit implementation. The set of 

microinstructions is stored in the control memory. The control address register contains the address of the next 
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microinstruction to be read. When a microinstruction is read from the control memory, it is transferred to a control 

buffer register. The left-hand portion of that register (see Figure 5.1a) connects to the control lines emanating from 

the control unit. Thus, reading a microinstruction from the control memory is the same as executing that 

microinstruction.The third element shown in the figure is a sequencing unit that loads the control address register and 

issues a read command.   
Let us examine this structure in greater detail, as depicted in Figure 5.4.The control unit functions as follows:   

1 To execute an instruction, the sequencing logic unit issues a READ command to the control memory.   

2 The word whose address is specified in the control address register is read into the control buffer register.   

3 The content of the control buffer register generates control signals and next-address information for the 

sequencing logic unit.   

4 The sequencing logic unit loads a new address into the control address register based on the next-address 

information from the control buffer register and the ALU flags.   
  

  
Figure 5.4 Functioning of microprogrammed control unit  

At the conclusion of each microinstruction, the sequencing logic unit loads a new address into the control 

address register. Depending on the value of the ALU flags and the control buffer register, one of three decisions is 

made:   

• Get the next instruction: Add 1 to the control address register.   

• Jump to a new routine based on a jump microinstruction: Load the address field of the control buffer 

register into the control address register.   

• Jump to a machine instruction routine: Load the control address register based on the opcode in the IR.  

Figure 5.4 shows two modules labeled decoder. The upper decoder translates the opcode of the IR into a 

control memory address. The lower decoder is not used for horizontal microinstructions but is used for vertical 

microinstructions (Figure 5.1b). In a horizontal microinstruction every bit in the control field attaches to a control 
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line. In a vertical microinstruction, a code is used for each action to be performed, and the decoder translates this 

code into individual control signals. The advantage of vertical microinstructions is that they are more compact (fewer 

bits) than horizontal microinstructions.  

Advantages and Disadvantages   

The principal advantage of the use of microprogramming to implement a control unit is that it simplifies the 

design of the control unit. Thus, it is both cheaper and less error prone to implement. A hardwired control unit must 

contain complex logic for sequencing through the many micro-operations of the instruction cycle. On the other hand, 

the decoders and sequencing logic unit of a microprogrammed control unit are very simple pieces of logic.   
The principal disadvantage of a microprogrammed unit is that it will be somewhat slower than a hardwired 

unit of comparable technology. Despite this, microprogramming is the dominant technique for implementing control 

units in pure CISC architectures, due to its ease of implementation. RISC processors, with their simpler instruction 

format, typically use hardwired control units.   
  

❖ MICROINSTRUCTION SEQUENCING  
The two basic tasks performed by a microprogrammed control unit are as follows:   

• Microinstruction sequencing: Get the next microinstruction from the control memory.   

• Microinstruction execution: Generate the control signals needed to execute the microinstruction.   

  

In designing a control unit, these tasks must be considered together, because both affect the format of the 

microinstruction and the timing of the control unit.   

Design Considerations   

Two concerns are involved in the design of a microinstruction sequencing technique: the size of the microinstruction 

and the address-generation time. The first concern is obvious; minimizing the size of the control memory reduces the 

cost of that component. The second concern is simply a desire to execute microinstructions as fast as possible.   
In executing a microprogram, the address of the next microinstruction to be executed is in one of these 

categories:   

• Determined by instruction register   

• Next sequential address   

• Branch   

  

Sequencing Techniques   

Based on the current microinstruction, condition flags, and the contents of the instruction register, a control 

memory address must be generated for the next microinstruction. A wide variety of techniques have been used. These 

categories are based on the format of the address information in the microinstruction:   

• Two address fields   

• Single address field   

• Variable format   

  

Two Address Field:  
The simplest approach is to provide two address fields in each microinstruction. Figure 5.5 suggests how this 

information is to be used. A multiplexer is provided that serves as a destination for both address fields plus the 

instruction register. Based on an address-selection input, the multiplexer transmits either the opcode or one of the two 

addresses to the control address register (CAR). The CAR is subsequently decoded to produce the next 

microinstruction address.The address-selection signals are provided by a branch logic module whose input consists 

of control unit flags plus bits from the control portion of the microinstruction.   
Although the two-address approach is simple, it requires more bits in the microinstruction than other 

approaches. With some additional logic, savings can be achieved.  
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Figure 5.5 Branch Control Logic: Two Address Field Single 

Address Field:  

  
Figure 5.6 Branch Control Logic: Single Address Field  
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 A common approach is to have a single address field (Figure 5.6). With this approach, the options for next 

address are as follows:   

• Address field   

• Instruction register code   

• Next sequential address  

The address-selection signals determine which option is selected. This approach reduces the number of address 

fields to one. Note, however, that the address field often will not be used. Thus, there is some inefficiency in the 

microinstruction coding scheme.   

  

Variable Format:  

  
Another approach is to provide for two entirely different microinstruction formats (Figure 5.7). One bit 

designates which format is being used. In one format, the remaining bits are used to activate control signals. In the 

other format, some bits drive the branch logic module, and the remaining bits provide the address.   

One disadvantage of this second approach is that one entire cycle is consumed with each branch 

microinstruction. With the other approaches, address generation occurs as part of the same cycle as control signal 

generation, minimizing control memory accesses.  

  

  

Figure 5.7 Branch Control Logic: Variable Format  

Address Generation   

There are various ways in which the next address can be derived or computed.   
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Table 5.1 lists the various address generation techniques. These can be divided into explicit techniques, in which 

the address is explicitly available in the microinstruction, and implicit techniques, which require additional logic to 

generate the address.   

  

Table 5.1 MicroInstruction Address Generation Techniques  

We have essentially dealt with the explicit techniques. With a two-field approach, two alternative addresses are 

available with each microinstruction. Using either a single address field or a variable format, various branch 

instructions can be implemented. A conditional branch instruction depends on the following types of information:   

• ALU flags   

• Part of the opcode or address mode fields of the machine instruction   

• Parts of a selected register, such as the sign bit   

• Status bits within the control unit   

  

Several implicit techniques are also commonly used. One of these, mapping, is required with virtually all 

designs. The opcode portion of a machine instruction must be mapped into a microinstruction address.This occurs 

only once per instruction cycle. A common implicit technique is Addition that involves combining or adding two 

portions of an address to form the complete address. The final approach is termed residual control. This approach 

involves the use of a microinstruction address that has previously been saved in temporary storage within the control 

unit. An example of this approach is taken on the LSI-11.  
  

LSI-11 Microinstruction Sequencing   

The LSI-11 is a microcomputer version of a PDP-11, which is implemented using a microprogrammed control 

unit.  
The LSI-11 makes use of a 22-bit microinstruction and a control memory of 2K 22-bit words. The next 

microinstruction address is determined in one of five ways:   

• Next sequential address: In the absence of other instructions, the control unit’s control address register is 

incremented by 1.   

• Opcode mapping: At the beginning of each instruction cycle, the next microinstruction address is 

determined by the opcode.   

• Subroutine facility: Explained presently.   

• Interrupt testing: Certain microinstructions specify a test for interrupts. If an interrupt has occurred, this 

determines the next microinstruction address.   

• Branch: Conditional and unconditional branch microinstructions are used.   

  

❖ MICROINSTRUCTION EXECUTION  

The microinstruction cycle is the basic event on a microprogrammed processor. Each cycle is made up of two 

parts: fetch and execute. The fetch portion is determined by the generation of a microinstruction address and the 

execution of a microinstruction is to generate control signals. Some of these signals control points internal to the 

processor. The remaining signals go to the external control bus or other external interface.  A Taxonomy of 

Microinstructions   

Microinstructions can be classified in a variety of ways. Distinctions that are commonly made in the literature include 

the following:   



                                                                                                                                                           UNIT-V  

  

GEU Page 8  

  

• Vertical/horizontal   

• Packed/unpacked   

• Hard/soft microprogramming   

• Direct/indirect encoding   

Horizontal/Vertical microinstruction: Each bit of a microinstruction either directly produced a control signal or 

directly produced one bit of the next address. These schemes require a more complex sequencing logic module. 

Packed/Unpacked Microinstruction: The degree of packing relates to the degree of identification between a given 

control task and specific microinstruction bits. As the bits become more packed, a given number of bits contains more 

information. Thus, packing connotes encoding. The terms horizontal and vertical relate to the relative width of 

microinstructions. The terms hard and soft microprogramming are used to suggest the degree of closeness to the 

underlying control signals and hardware layout. Hard microprograms are generally fixed and committed to read-only 

memory. Soft microprograms are more changeable and are suggestive of user microprogramming. The other pair is 

direct versus indirect encoding.   

Microinstruction Encoding   

Some degree of encoding is used to reduce control memory width and to simplify the task of microprogramming.   

The basic technique for encoding is illustrated in Figure 5.8a. The microinstruction is organized as a set of 

fields. Each field contains a code, which, upon decoding, activates one or more control signals. When the 

microinstruction is executed, every field is decoded and generates control signals.Thus, with N fields, N simultaneous 

actions are specified. Each action results in the activation of one or more control signals   

  

Figure 5.8 MicroInstruction Encoding  

The design of an encoded microinstruction format can now be stated in simple terms:   

• Organize the format into independent fields. That is, each field depicts a set of actions (pattern of control 

signals) such that actions from different fields can occur simultaneously.   

• Define each field such that the alternative actions that can be specified by the field are mutually exclusive. 

That is, only one of the actions specified for a given field could occur at a time.   
Two approaches can be taken to organizing the encoded microinstruction into fields: functional and resource. 

The functional encoding method identifies functions within the machine and designates fields by function type. For 

example, if various sources can be used for transferring data to the accumulator, one field can be designated for this 
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purpose, with each code specifying a different source. Resource encoding views the machine as consisting of a set 

of independent resources and devotes one field to each (e.g., I/O, memory, ALU).   
Another aspect of encoding is whether it is direct or indirect (Figure 5.8b). With indirect encoding, one field is 

used to determine the interpretation of another field.   


